Banner Portal
Daylight and energy performance of side lighting systems in an office room in a subtropical climate
PDF

Keywords

Energy consumption
Office room
Glazing
Simulation
Climate-based daylighting metrics

How to Cite

GABRIEL, Elaise; GRIGOLETTI, Giane de Campos; MELLER, Gabriela; ZAMBONATO, Bruna. Daylight and energy performance of side lighting systems in an office room in a subtropical climate . PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 15, n. 00, p. e024003, 2024. DOI: 10.20396/parc.v15i00.8670676. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8670676. Acesso em: 17 jul. 2024.

Abstract

In office buildings, daylight is an important natural resource, as it is profusely available during occupied hours. However, its use can increase energy consumption for air conditioning. Therefore, combining this resource with side lighting systems and promoting its integration with electric lighting is essential to obtain an energy balance. This paper aims to analyze daylight performance and the energy consumption for lighting and air conditioning considering four types of glazing, four orientations, from window-to-wall ratios varying between 40% to 100% for bare and shaded window models in an office room located in a subtropical city in southern Brazil. The methodology was based on Useful Daylight Illuminance levels of 500 to 2,500 lx, Daylight Autonomy levels of 500 lx, and total energy consumption through simulation in DesignBuilder software. The results showed that L13 glazing is not recommended for bare and shaded windows, regardless of window orientation. M76 presented the best performance for energy consumption for West shaded windows. For the West, shading is necessary irrespective of the glazing type (except L13, whose best performance is for bare windows) from WWR 50%. M76 and M52 had the lowest total energy consumption. The findings of this study add to an understanding of the energy savings and lighting performance of different types of glazing, combined with window apertures, and solar orientations for a subtropical climate. Furthermore, the study shows that the choice of glazing depends not only on the presence of shading but also on the orientation and WWR, without a linear behavior.

https://doi.org/10.20396/parc.v15i00.8670676
PDF

References

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO/CIE 8995-1: Iluminação de ambientes de trabalho. Parte 1: Interior. Rio de Janeiro: ABNT, 2013. 46 p.

AHMAD, R. M.; REFFAT, R. M. A comparative study of various daylighting systems in office buildings for improving energy efficiency in Egypt. Journal of Building Engineering, v. 18, p. 360-376, July 2018. DOI: https://doi.org/10.1016/j.jobe.2018.04.002.

ASHRAE. AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. ASHRAE Handbook-Fundamentals. Atlanta: ASHRAE, 2001. 1 v.

ASFOUR, O. S. A comparison between the daylighting and energy performance of courtyard and atrium buildings considering the hot climate of Saudi Arabia. Journal of Building Engineering, v. 30, p. 101299, July 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101299.

ABRAVIDRO. ASSOCIAÇÃO BRASILEIRA DE PROCESSADORES E DISTRIBUIDORES DE VIDROS PLANOS. O mercado vidreiro em números. São Paulo: ABRAVIDRO, 2021. 12 p. Disponível em: https://abravidro.org.br/wp-content/uploads/2021/05/Panorama_Abravidro_2021_tablet.pdf. Acesso em: 15 nov. 2022.

ATZERI, A.; CAPPELLETTI, F.; GASPARELLA, A. Internal Versus External Shading Devices Performance in Office Buildings. Energy Procedia, v. 45, p. 463-472, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.01.050.

BAKER, N; STEEMERS, K. Daylight Design of Buildings: a handbook for architects and engineers. Londres: Routledge, 2002. 260 p. DOI: https://doi.org/10.4324/9781315073750.

BEUTE, F.; DE KORT, Y. A. W. The natural context of wellbeing: ecological momentary assessment of the influence of nature and daylight on affect and stress for individuals with depression levels varying from none to clinical. Health & Place, v. 49, p. 7-18, Jan. 2018. DOI: https://doi.org/10.1016/j.healthplace.2017.11.005.

BODART, M.; DE HERDE, A. Global energy savings in offices buildings by the use of daylighting. Energy and Buildings, v. 34, n. 5, p. 421-429, June 2002. DOI: https://doi.org/10.1016/S0378-7788(01)00117-7.

CARLO, J. C. Desenvolvimento de metodologia de avaliação da eficiência energética do envoltório de edificações não-residenciais. 2008. 169 p. Tese (Doutorado em Engenharia Civil) – Programa de Pós-graduação em Engenharia Civil, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianopolis, 2008. Disponível em: http://repositorio.ufsc.br/xmlui/handle/123456789/91026. Acesso em: 15 nov. 2022.

MARCONDES CAVALERI, M. P. M.; CUNHA, G. R. M.; GONÇALVES, J. C. S. Iluminação natural em edifícios de escritórios: avaliação dinâmica de desempenho para São Paulo. Parc Pesquisa em Arquitetura e Construção, v. 9, n. 1, p. 19-34, 31, mar. 2018. DOI: https://doi.org/10.20396/parc.v9i1.8650725.

CELLAI, G.; CARLETTI, C.; SCIURPI, F.; SECCHI, S. Transparent Building Envelope: windows and shading devices typologies for energy efficiency refurbishments. In: MAGRINI, A. (ed.). Building Refurbishment for Energy Performance. New York: Springer, 2014. p. 61-118. DOI: https://doi.org/10.1007/978-3-319-03074-6_2.

CHI, D. A.; MORENO, D.; NAVARRO, J. Design optimisation of perforated solar façades in order to balance daylighting with thermal performance. Building and Environment, v. 125, p. 383-400, Nov. 2017. DOI: https://doi.org/10.1016/j.buildenv.2017.09.007.

CHUA, K. J.; CHOU, S. K. Energy performance of residential buildings in Singapore. Energy, v. 35, n. 2, p. 667-678, Feb. 2010. DOI: https://doi.org/10.1016/j.energy.2009.10.039.

CIE. COMMISSION INTERNATIONALE DE L’ÉCLAIRAGE. CIE Standard General Sky Guide. Technical Report. CIE 215:2014. Vienna: CIE Central Bureau, 2014.

DESIGNBUILDER. DesignBuilder Software Ltd. Version 6.1.3.008. 2020.

DIDONÉ, E. L.; PEREIRA, F. O. R. Simulação computacional integrada para a consideração da luz natural na avaliação do desempenho energético de edificações. Ambiente Construído, v. 10, n. 4, p. 139-154, dez. 2010. DOI: https://doi.org/10.1590/S1678-86212010000400010.

DIDONÉ, E. L.; BITTENCOURT, L. S. O impacto dos protetores solares na eficiência energética de hotéis. In: XII ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO. ENTAC, 12., 2008, Fortaleza. Anais [...]. Fortaleza: ANTAC, 2008. v. 12.

DIDONÉ, E. L.; WAGNER, A.; PEREIRA, F. O. R. Estratégias para edifícios de escritórios energia zero no Brasil com ênfase em BIPV. Ambiente Construído, v. 14, n. 3, p. 27-42, set. 2014. DOI: https://doi.org/10.1590/S1678-86212014000300003.

EDWARDS, L; TORCELLINI, P. A Literature Review of the Effects of Natural Light on Building Occupants. Golden: National Renewable Energy Laboratory, 2002. 58 p. (Technical Report). Disponível em: https://www.nrel.gov/docs/fy02osti/30769.pdf. Acesso em: 22 jan. 2023.

EPE. EMPRESA DE PESQUISA ENERGÉTICA. Balanço Energético Nacional 2021: ano base 2020. Rio de Janeiro: EPE, 2021. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf. Acesso em: 5 jan. 2023.

EVOLA, G.; COSTANZO, V.; INFANTONE, M.; MARLETTA, L Typical-year and multi-year building energy simulation approaches: a critical comparison. Energy, v. 219, p. 119591, Mar. 2021. DOI: https://doi.org/10.1016/j.energy.2020.119591.

FANG, Y.; CHO, S. Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy, v. 191, p. 7-18, Oct. 2019. DOI: https://doi.org/10.1016/j.solener.2019.08.039.

FASI, M. A.; BUDAIWI, I. M. Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates. Energy and Buildings, v. 108, p. 307-316, Dec. 2015. DOI: https://doi.org/10.1016/j.enbuild.2015.09.024.

FERNANDES, T. B.; RUIVO, R. B.; CUNHA, E. G.; KREBS, L. F. Desempenho termoenergético de coberturas vegetadas em clima subtropical. Parc Pesquisa em Arquitetura e Construção, v. 9, n. 4, p. 262-275, dez. 2018. DOI: https://doi.org/10.20396/parc.v9i4.8650882.

GHISI, E.; TINKER, J. A. Optimizing energy consumption in offices as a function of window area and room size. In: INTERNATIONAL IBPSA CONFERENCE BUILDING SIMULATION, 7., 2001, Rio de Janeiro. Proceedings […]. Rio de Janeiro: IBPSA, 2001. p. 1307-1314. Disponível em: https://publications.ibpsa.org/proceedings/bs/2001/papers/bs2001_1307_1314.pdf. Acesso em: 20 out. 2023.

GHISI, E.; TINKER, J.A.; IBRAHIM, S.H. Área de janela e dimensões de ambientes para iluminação natural e eficiência energética: literatura versus simulação computacional. Ambiente Construído, v. 5, n. 4, p. 81-93. 2005. Disponível em: https://seer.ufrgs.br/index.php/ambienteconstruido/article/view/3659. Acesso em: 20 jan. 2023.

GHOSH, A.; NEOGI, S. Effect of fenestration geometrical factors on building energy consumption and performance evaluation of a new external solar shading device in warm and humid climatic condition. Solar Energy, v. 169, p. 94-104, July 2018. DOI: https://doi.org/10.1016/j.solener.2018.04.025.

HELDWEIN, A. B.; BURIOL, G. A.; STRECK, N. A. O clima de Santa Maria. Revista Ciência & Ambiente, Santa Maria, v. 38, p. 43–58, 2009. Disponível em: https://cienciaeambiente.com.br/shared-files/2037/?043-058.pdf. Acesso em: 20 out. 2023.

INMETRO. INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Anexo da Portaria n. 018/2012: Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Residenciais - RTQ-R. Brasília, DF: INMETRO, 2012. Disponível em: https://www.pbeedifica.com.br/sites/default/files/projetos/etiquetagem/residencial/downloads/RTQR.pdf. Acesso em: 23 mar. 2022.

INMETRO. INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Anexo da Portaria n. 042/2021: Instrução Normativa Inmetro para a Classificação de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas (INI-C). Brasília, DF: INMETRO, 2021. Disponível em: http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC002707.pdf. Acesso em: 23 mar. 2022.

INMETRO. INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Anexo da Portaria n. 050/2013. Anexo Geral V: Catálogo de propriedades térmicas de paredes, coberturas e vidros. Brasília, DF: INMETRO, 2013. Disponível em: http://www.inmetro.gov.br/consumidor/produtospbe/regulamentos/anexov.pdf. Acesso em: 23 mar. 2022.

INMETRO. INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Anexo da Portaria n. 372/2010: Requisitos Técnicos da Qualidade para o Nível de Eficiência Energética de Edificações Comerciais - RTQ-C. Brasília, DF: INMETRO, 2010. Disponível em: https://www.pbeedifica.com.br/sites/default/files/projetos/etiquetagem/comercial/downloads/Port372-2010_RTQ_Def_Edificacoes-C_rev01.pdf. Acesso em: 23 mar. 2022.

KÖPPEN, W.; GEIGER, R. Klimate der Erde. Gotha: Verlag Justus Perthes, 1928.

LABEEE. LABORATÓRIO DE EFICIÊNCIA ENERGÉTICA EM EDIFICAÇÕES. Arquivos climáticos. 2019. Disponível em: https://labeee.ufsc.br/downloads/arquivos-climaticos/inmet2018. Acesso em: 2 abr. 2022.

LI, D. H. W. A review of daylight illuminance determinations and energy implications. Applied Energy, v. 87, n. 7, p. 2109-2118, July 2010. DOI: https://doi.org/10.1016/j.apenergy.2010.03.004.

LI, D. H. W.; LAM, J. C. Measurements of solar radiation and illuminance on vertical surfaces and daylighting implications. Renewable Energy, v. 20, n. 4, p. 389-404, Aug. 2000. DOI: https://doi.org/10.1016/S0960-1481(99)00126-3.

LÖBLER, C. A. ; SCCOTI, A. A. V. ; WERLANG, M. K. Contribution to the delineation of Pampa and Atlantic Forest biomes in Santa Maria, RS. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, Santa Maria, v. 19, n. 2, p. 1250-1257, May-Aug. 2015. DOI: https://doi.org/10.5902/2236117016038.

MARDALJEVIC, J.; HESCHONG, L.; LEE, E. Daylight metrics and energy savings. Lighting Research & Technology, v. 41, n. 3, p. 261-283, Sept. 2009. SAGE Publications. DOI: https://doi.org/10.1177/1477153509339703.

MÜNCH, M.; LINHART, F.; BORISUIT, A.; JAEGGI, S. M.; SCARTEZZINI, J. Effects of prior light exposure on early evening performance, subjective sleepiness, and hormonal secretion. Behavioral Neuroscience, v. 126, n. 1, p. 196-203, Dec. 2012. DOI: https://doi.org/10.1037/a0026702.

MÜNCH, M.; WIRZ-JUSTICE, A.; BROWN, S. A.; KANTERMANN, T.; MARTINY, K.; STEFANI, O.; VETTER, C.; WRIGHT JR., K. P.; WULFF, K.; SKENE, D. The Role of Daylight for Humans: gaps in current knowledge. Clocks & Sleep, v. 2, n. 1, p. 61-85, Feb. 2020. DOI: https://doi.org/10.3390/clockssleep2010008.

NABIL, A.; MARDALJEVIC, J. Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Lighting Research & Technology, v. 37, n. 1, p. 41-57, Mar. 2005. DOI: https://doi.org/10.1191/1365782805li128oa.

PELLEGRINO, A.; CAMMARANO, S.; LO VERSO, V. R. M.; CORRADO, V. Impact of daylighting on total energy use in offices of varying architectural features in Italy: results from a parametric study. Building and Environment, v. 113, p. 151-162, Feb. 2017. DOI: https://doi.org/10.1016/j.buildenv.2016.09.012.

PILECHIHA, P.; MAHDAVINEJAD, M.; RAHIMIAN, F. P.; CARNEMOLLA, P.; SEYEDZADEH, S. Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency. Applied Energy, v. 261, p. 114356, Mar. 2020. DOI: https://doi.org/10.1016/j.apenergy.2019.114356.

POIRAZIS, H.; BLOMSTERBERG, A.; WALL, M. Energy simulations for glazed office buildings in Sweden. Energy and Buildings, v. 40, n. 7, p. 1161-1170, Jan. 2008. DOI: https://doi.org/10.1016/j.enbuild.2007.10.011.

PROWLER, D. Sun Control and Shading Devices. Washington: National Institute of Buiding Sciences, 2016. Acesso em: 15 jan. 2023. Disponível em: https://www.wbdg.org/resources/sun-control-and-shading-devices.

QIU, C.; YANG, H. Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones. Applied Energy, v. 276, p. 115414, Oct. 2020. DOI: https://doi.org/10.1016/j.apenergy.2020.115414.

QUEIROZ, N.; WESTPHAL, F. S.; PEREIRA, F. O. R. A performance-based design validation study on EnergyPlus for daylighting analysis. Building and Environment, v. 183, p. 107088, Oct. 2020. DOI: https://doi.org/10.1016/j.buildenv.2020.107088.

REFFAT, R. M.; AHMAD, R. M. Determination of optimal energy-efficient integrated daylighting systems into building windows. Solar Energy, v. 209, p. 258-277, Oct. 2020. DOI: https://doi.org/10.1016/j.solener.2020.08.086.

REINHART, C. F. Tutorial on the Use of Daysim Simulations for Sustainable Design. Ottawa: Institute for Research in Construction, National Research Council Canada, 2006.

REINHART, C. F.; MARDALJEVIC, J.; ROGERS, Z. Dynamic Daylight Performance Metrics for Sustainable Building Design. Leukos, v. 3, n. 1, p. 7-31, 2006. DOI: https://doi.org/10.1582/LEUKOS.2006.03.01.001.

REZAEI, S. D.; SHANNIGRAHI, S.; RAMAKRISHNA, S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Solar Energy Materials and Solar Cells, v. 159, p. 26-51, Jan. 2017. DOI: https://doi.org/10.1016/j.solmat.2016.08.026.

RUPP, R. F.; GHISI, E. Assessing window area and potential for electricity savings by using daylighting and hybrid ventilation in office buildings in southern Brazil. Simulation, v. 93, n. 11, p. 935-949, May 3, 2017. DOI: https://doi.org/10.1177/0037549717706171.

SANTA MARIA. Lei Complementar n. 119, de 26 de julho de 2018. Dispõe Sobre o Código de Obras e Edificações do Município de Santa Maria e dá outras providências. Leis Municipais, Santa Maria, 26 jul., 2018. Disponível em: https://leismunicipais.com.br/a/rs/s/santa-maria/lei-complementar/2018/12/119/lei-complementar-n-119-2018-dispoe-sobre-o-codigo-de-obras-e-edificacoes-do-municipio-de-santa-maria-e-da-outras-providencias. Acesso em: 21 jun., 2021.

SANTANA, M. V. Influência de Parâmetros Construtivos no Consumo de Energia de Edifícios de Escritório Localizados em Florianópolis – SC. 2006. 196 f. Dissertação (Mestrado em Engenharia Civil) – Departamento de Engenharia Civil, Universidade Federal de Santa Catarina, Florianopolis, 2006. Disponível em: http://repositorio.ufsc.br/xmlui/handle/123456789/88694. Acesso em: 20 nov. 2023.

SHAERI, J.; YAGHOUBI, M.; HABIBI, A.; CHOKHACHIAN, A. The Impact of Archetype Patterns in Office Buildings on the Annual Cooling, Heating and Lighting Loads in Hot-Humid, Hot-Dry and Cold Climates of Iran. Sustainability, v. 11, n. 2, p. 311, Jan. 2019. DOI: https://doi.org/10.3390/su11020311.

TALEB, H. M.; ANTONY, A. G. Assessing different glazing to achieve better lighting performance of office buildings in the United Arab Emirates (UAE). Journal of Building Engineering, v. 28, p. 101034, Mar. 2020. DOI: https://doi.org/10.1016/j.jobe.2019.101034.

TROUP, L.; PHILLIPS, R.; ECKELMAN, M. J.; FANNON, D. Effect of window-to-wall ratio on measured energy consumption in US office buildings. Energy and Buildings, v. 203, p. 109434, Nov. 2019. DOI: https://doi.org/10.1016/j.enbuild.2019.109434.

XUE, P.; LI, Q.; XIE, J.; ZHAO, M.; LIU, J. Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements. Applied Energy, v. 233-234, p. 62-70, Jan. 2019. DOI: https://doi.org/10.1016/j.apenergy.2018.10.027.

YE, H.; MENG, X.; XU, B. Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window. Energy and Buildings, v. 49, p. 164-172, June 2012. DOI: https://doi.org/10.1016/j.enbuild.2012.02.011.

YU, X.; SU, Y. Daylight availability assessment and its potential energy saving estimation –A literature review. Renewable and Sustainable Energy Reviews, v. 52, p. 494-503, Dec. 2015. DOI: https://doi.org/10.1016/j.rser.2015.07.142.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.