Banner Portal
Thermal influence of living wall in the winter of subtropical climate in Brazil
Neste volume apresentamos na capa a Residência para professores em Gando, Burkina Faso. Projetada por Francis Kéré. Imagem do Wikimedia Commons
PDF

Keywords

Vertical garden
Thermal performance
Green infraestructure
Green wall
Verticaal greenery systems

How to Cite

CRUCIOL-BARBOSA, Murilo; FONTES, Maria Solange Gurgel de Castro; AZAMBUJA, Maximiliano dos Anjos. Thermal influence of living wall in the winter of subtropical climate in Brazil. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 14, n. 00, p. e023013, 2023. DOI: 10.20396/parc.v14i00.8670841. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8670841. Acesso em: 21 may. 2024.

Abstract

The continuous living wall is a type of vertical garden built with different layers, which allows the cultivation of a wide variety of species and protects the façade from direct sunlight. From this, this experimental study aimed to identify and quantify the influence of a continuous living wall on the variations of the internal and external surface temperatures (Ist and Est) of an East façade, in the winter period, in the Cfa climate. The garden had the differential of being built with Tetrapak® recycled boards to differentiate it from the other technologies already studied and to test a material used in environmental compensation projects. The surface temperatures of the living wall, the protected and the control plot were monitored and compared to analyze the intensity of the shading mechanism. The results demonstrate that, in the early morning, the living wall prevented heat loss from the façade and, from direct sunlight, kept the protected plot's surface temperatures lower than the control plot. This difference reached up to 9.4 °C at Est (morning period) and 2.8 °C at Ist (afternoon period), as well as a maximum thermal delay of 06h30min between Est peaks. These findings show the positive influence of the living wall in winter, considering the characteristics of the Cfa climate (cold in the morning and hot during the day), expand knowledge about the thermal influence of the continuous living wall in the building and reinforce the use of living walls beyond aesthetics.

https://doi.org/10.20396/parc.v14i00.8670841
PDF

References

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. v. 22, n. 6, p. 711-728, Jan. 2013. DOI: 10.1127/0941-2948/2013/0507.

BARBOSA, M. C.; FONTES, M. S. G. C. Jardins Verticais: a contribuição das paredes vivas na recuperação da biodiversidade urbana nativa. In: CONGRESSO DE BIOLOGIA, 1., 2018, Bauru. Livro de Resumos [...]. Bauru: UNESP, 2018. p. 34-36.

BARBOSA, M. C.; FONTES, M. S. G. C. Jardins verticais: modelos e técnicas. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 7, n. 2, p. 114–124, jun. 2016. DOI: 10.20396/parc.v7i2.8646304.

BIANCO, L.; SERRA, V.; LARCHER, F.; PERINO, M. Thermal behaviour assessment of a novel vertical greenery module system: first results of a long-term monitoring campaign in an outdoor test cell. Energy Efficiency, v. 10, p. 625-638, Sept. 2017. DOI: https://doi.org/10.1007/s12053-016-9473-4.

BLANC, P. Vertical Garden: A scientific and artistic approach. 2008. Disponível em: http://www.verticalgardenpatrickblanc.com/documents. Acesso em: 31 jul. 2015.

CAETANO, F. D. N. Influência de muros vivos sobre o desempenho térmico de edifícios. 2014. 101 p. Dissertação (Mestrado) - Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas. 2014. DOI: https://doi.org/10.47749/T/UNICAMP.2014.937795.

CHAROENKIT, S. YIEMWATTANA, S. Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review. Building and Environment, v. 105, p. 82-94, Aug. 2016. DOI: https://doi.org/10.1016/j.buildenv.2016.05.031.

CHAROENKIT, S.; YIEMWATTANA, S. Role of specific plant characteristics on thermal and carbon sequestration properties of living walls in tropical climate. Building and Environment, v. 115, p. 67-79, Apr. 2017. DOI: https://doi.org/10.1016/j.buildenv.2017.01.017.

CHEN, Q., LI, B., LIU, X. An experimental evaluation of the living wall system in hot and humid climate. Energy and Buildings, v. 61, p. 298-307, June 2013. DOI: https://doi.org/10.1016/j.enbuild.2013.02.030.

COMA, J.; PÉREZ, G.; GRACIA, A.; BURÉS, S.; URRESTARAZU, M.; CABEZA, L. F. Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment, v. 111, p. 228-237, Jan. 2017. DOI: https://doi.org/10.1016/j.buildenv.2016.11.014.

DJEDJIG, R; BELARBI, R; BOZONNET, E. Experimental study of green walls impacts on buildings in summer and winter under an oceanic climate. Energy and Buildings, v. 150, p. 403-411, Sept. 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.06.032.

IPMET. INSTITUTO DE PESQUISAS METEOROLÓGICAS. Previsão climática trimestral. Bauru: Centro de Meteorologia de Bauru - FC/Unesp, 2020. Disponível em: https://www.ipmetradar.com.br/4estacoes/#. Acesso em: 20 out. 2022.

KÖHLER, M. Green facades- a view back and some visions. Urban Ecosystems, v. 11, p. 423-436, May 2008. DOI: https://doi.org/10.1007/s11252-008-0063-x.

LIMA JUNIOR, J. E. Avaliação da influência de um sistema de fachada viva: o estudo de caso da planta Sphagneticola trilobata em condições de inverno de Curitiba. 2014. 128 f. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia da Construção Civil, Universidade Federal do Paraná, Curitiba. 2014. Disponível em: https://hdl.handle.net/1884/36584. Acesso em: 20 set. 2022.

LORENZI, H., SOUZA, H. M. Plantas ornamentais no Brasil: arbustivas, herbáceas e trepadeiras. Nova Odessa: Instituto Plantarum, 2008. 1088p.

MANSO, M.; CASTRO-GOMES, J. Green wall systems: A review of their characteristics. Renewable and Sustainable Energy Reviews, v. 41, p. 863-871, Jan. 2015. DOI: https://doi.org/10.1016/j.rser.2014.07.203.

MAZZALI, U., PERON, F., ROMAGNONI, P., PULSELLI, R. M., BASTIANONI, S. Experimental investigation on the energy performance of living walls in a temperate climate. Building and Environment, v.64, p. 57-66, June 2013. DOI: https://doi.org/10.1016/j.buildenv.2013.03.005.

OTTELÉ, M; PERINI, K. Comparative experimental approach to investigate the thermal behavior of vertical greened façades of buildings. Ecological Engineering, v. 108, pt. A, p. 152-161, Nov. 2017. DOI: https://doi.org/10.1016/j.ecoleng.2017.08.016.

PÉREZ, G.; COMA, J.; MARTORELL, I., CABEZA, L. F. Vertical greenery systems (VGS) for energy saving in buildings: a review. Renewable and Sustainable Energy Reviews, v. 39, p. 139-165, Nov. 2014. DOI: https://doi.org/10.1016/j.rser.2014.07.055.

PÉREZ, G.; RINCÓN, L.; VILA, A.; GONZÁLEZ, J. M.; CABEZA, L. F. Green vertical systems for buildings as passive systems for energy savings. Applied Energy, v. 88, n. 12, p. 4854-4859, Dec. 2011. DOI: https://doi.org/10.1016/j.apenergy.2011.06.032.

PERINI, K.; OTTELÉ, M.; FRAAIJ, A. L. A.; HAAS, E. M.; RAITERI, R. Vertical greening systems and the effect on air flow and temperature on the building envelope. Building and Environment, v. 46, n. 11, p. 2287-2294, Nov. 2011. DOI: https://doi.org/10.1016/j.buildenv.2011.05.009.

PERINI, K; BAZZOCCHI, F; CROCI, L; MACGLIOCCO, A; CATTANEO, E. The use of vertical greening systems to reduce the energy demand for air conditioning. Field monitoring in Mediterranean climate. Energy and Buildings, v.143, p. 35-42, May 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.03.036.

PERINI, K; OTTELE, M. Vertical greening systems: contribution to thermal behavior on the building envelope and environmental sustainability. WIT Transactions on Ecology and The Environment. v.165. 2012. DOI: doi:10.2495/ARC120221.

RAZZAGHMANESH, M.; RAZZAGHMANESH, M. Thermal performance investigation of a living wall in a dry climate of Australia. Building and Environment, v.112, p. 45-62, Feb. 2017. DOI: https://doi.org/10.1016/j.buildenv.2016.11.023.

REOLOM, M. Jardins verticais e telhados verdes vão servir em SP como compensação ambiental. O Estado de São Paulo, São Paulo, ano 135, n. 44340, 12 mar. 2015.

SHARP, R.; SABLE, J.; BERTRAM, F.; MOHAN, E.; PECK, S. Introduction to Green Walls: technology, benefits & design. Green Roofs for Healty Cities, Sept. 2008. 37 p.

SKYGARDEN. Opções de plantas: telhados verdes. 2015. Disponível em: https://www.skygarden.com.br/index.php/telhados-verdes/opcoes-de-plantas. Acesso em: 20 dez. 2022.

SUDIMAC, B., ILIĆ, B.; MUNCÁN, V.; ANDELKOVI Ć, A. Heat flux transmission assessment of a vegetation wall influence on the building envelope thermal conductivity. Journal of Cleaner Production, v. 223, p. 907-916, June 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.02.087.

WONG, N. H.; TAN, A. Y. K.; CHEN, Y.; SEKAR, K.; TAN, P. Y.; CHAN, D.; CHIANG, K.; WONG, N. C. Thermal evaluation of vertical greenery systems for building walls. Building and Environment, v. 45, n. 3, p. 663-672, Mar. 2010. DOI: https://doi.org/10.1016/j.buildenv.2009.08.005.

WONG, N. H.; TAN, A. Y. K.; TAN, P. Y.; WONG, N. C. Energy simulation of vertical greenery systems. Energy and Buildings. v. 41, n. 12, p.1401-1408, Dec. 2009. DOI: https://doi.org/10.1016/j.enbuild.2009.08.010.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.