Banner Portal
Attenuating measures for occupational exposure above the WBGT limit in industrial buildings
PDF (Português (Brasil))

Keywords

Natural ventilation
Heat source spaces evaluation
Industrial workplace

How to Cite

CAMARGOS, Bruno Henrique lourenço; SOUZA, Henor Artur de; OLIVEIRA, Raquel Diniz; GOMES, Adriano Pinto; DIAS, Luma de Souza; DIAS, Thalita Cardoso. Attenuating measures for occupational exposure above the WBGT limit in industrial buildings. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 15, n. 00, p. e024002, 2024. DOI: 10.20396/parc.v15i00.8672111. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8672111. Acesso em: 13 may. 2024.

Abstract

Occupational assessments are essential in ensuring employees' wellness, health, and productivity in industrial buildings. This study aims to evaluate the effects of heat exposure in industrial buildings equipped with internal heating sources in Belo Horizonte, Brazil. Using EnergyPlus numerical modeling, the analysis encompasses buildings with and without ridge vents, resulting in 12 distinct models with varying opening areas, internal source power and ridge vent heights. As a primary objective, compliance with the Wet-Bulb Globe Temperature (WBGT) index limit, as specified by NR-15/2021, was determined for indoor thermal conditions. As a result, roof ridge vents and shading devices significantly impact airflow, particularly regarding the increase in work hours that fulfil the WBGT limit. Additionally, the results revealed an enhancement of the chimney effect by internal heat, which led to a temperature reduction of up to 5.1°C through the ridge vent. Thus, by adjusting the ridge vent height, the WBGT can be further reduced by up to 3.3°C. Therefore, even during the hottest summer days in Belo Horizonte (Brazil), the maximum temperature remains at 28.5°C, with 36% of all annual hours exceeding the WBGT limit. As a key finding, a larger area of air outlets in industrial buildings equipped with internal heat sources increases indoor thermal comfort. In summary, similar cases can benefit from these strategies when designing new industrial facilities or retrofitting existing buildings.

https://doi.org/10.20396/parc.v15i00.8672111
PDF (Português (Brasil))

References

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220: Desempenho térmico de edificações. Parte 2 – Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro: ABNT, 2005. 34 p.

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15.575-1: Edificações habitacionais –Desempenho. Parte 1: Requisitos gerais. Rio de Janeiro: ABNT, 2013. 71 p.

ALLARD, F. (ed.). Natural ventilation in building: a design handbook. London: James & James, 1998. 356 p.

AMORIM, A. E. B.; LABAKI, L. C.; MAIA, P. A.; BARROS, T. M. S.; MONTEIRO, L. R. Exposição ocupacional ao calor em atividades a céu aberto na construção de estruturas de edifícios. Ambiente Construído, Porto Alegre, v. 20, n. 1, p. 231-245, jan./mar. 2020. DOI: http://dx.doi.org/10.1590/s1678-86212020000100371.

ASHRAE. AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. ANSI/ASHRAE 55: Thermal Environmental Conditions for Human Occupancy. Atlanta: ASHRAE, 2017. 66 p.

BACH, A.; PALUTIKOF, J.; TONMOY, F.; SMALLCOMBE, J.; RUTHERFORD, S.; JOARDER, A.; HOSSAIN, M.; OLLIE, J. Retrofitting passive cooling strategies to combat heat stress in the face of climate change: A case study of a ready-made garment factory in Dhaka, Bangladesh. Energy and Buildings, v. 286, p. 112954, May 2023. DOI: https://doi.org/10.1016/j.enbuild.2023.112954.

BAEZA, E.; PÉREZ-PARRA, J.; LOPEZ, J.; MONTERO, J. CFD study of the natural ventilation performance of a parral type greenhouse with different numbers of spans and roof vent configurations. Acta Horticulturae, v. 719, p. 333–340, 2006. DOI: https://doi.org/10.17660/ActaHortic.2006.719.37.

BORDIGNON, A. L. Equipamentos elétricos industriais: material didático. 2. ed. Juiz de Fora: UFJF, 2014, 68 p.

BOWER, J. Understanding Ventilation: How to design, select, and install residential ventilation systems. Boise: The Healtly House Institute, 1995. 428 p.

BRASIL. Ministério do Trabalho e Previdência. NR-15 - Atividades e Operações Insalubres. Brasília: Ministério do Trabalho e Previdência, 2021. Disponível em: https://www.gov.br/trabalho-e-emprego/pt-br/acesso-a-informacao/participacao-social/conselhos-e-orgaos-colegiados/comissao-tripartite-partitaria-permanente/arquivos/normas-regulamentadoras/nr-15-atualizada-2022.pdf. Acesso em: 03 jan. 2023.

CAMARGOS, B. H. L. Desempenho térmico de galpões industriais equipados com lanternins. 2019. 158 f. Dissertação (Mestrado em Engenharia Civil) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2019. Disponível em: http://www.repositorio.ufop.br/jspui/handle/123456789/16044. Acesso em: 17 jan. 2024.

CAMARGOS, B. H. L.; SOUZA, H. A.; GOMES, A. P.; LADEIRA, A. H.; REIS, R. A.; MAPA, L. P. P. Implementation of a code to obtain globe and wet-bulb temperatures for application of the WBGT index in the evaluation of the thermal performance of industrial sheds via computational simulations. In: OPEN Science Research I, v. 1, cap. 201, p. 2599-2609, 2022. DOI: https://dx.doi.org/10.37885/220107251.

CAMARGOS, B. H. L.; SOUZA, H. A.; GOMES, A. P.; LADEIRA, A.; REIS, R. A.; MAPA, L. P. P. Naturally ventilated industrial sheds: an investigation about the influence of wind direction in flow rate efficiency in continuous roof vents. Revista Internacional de Métodos numéricos para Cálculo y Diseño en Ingeniería, v. 37, n. 1, p. 1-18, 2021. DOI: https://dx.doi.org/10.23967/j.rimni.2021.01.007.

CHEN, C.-M.; LIN, Y-P.; CHUNG, S-C; LAI, C-M. Effects of the design parameters of ridge vents on induced buoyancy-driven ventilation. Buildings, v. 12, n. 2, p. 112-125, Jan. 2022. DOI: https://doi.org/10.3390/buildings12020112.

CHU, C.-R.; LAN, T.-W. Effectiveness of ridge vent to wind-driven natural ventilation in monoslope multi-span greenhouses. Biosystems Engineering, v. 186, p. 279–292, Oct. 2019. DOI: https://doi.org/10.1016/j.biosystemseng.2019.08.006.

CLEZAR, C. A.; NOGUEIRA, A. R. Ventilação industrial. 2. ed. Florianópolis: UFSC, 2009. 240 p.

COSTA, E. Ventilação. São Paulo: Edgard Blücher, 2005. 256 p.

DOE. - U.S. Department of Energy. U. S. Building Technologies Office. 2018. Disponível em: http://www.eere.energy.gov/buildings/tools_directory/alpha_list.cfm. Acesso em: 17 jan. 2024.

FEDYUSHKIN, A. I. Numerical simulation and analysis of the efficiency of natural ventilation in industrial buildings. Journal of Applied Mechanics and Technical Physics, v. 61, p. 936–944, 2020. DOI: https://doi.org/10.1134/S002189442006005X.

GERALDI, M. S.; MELO, A. P.; LAMBERTS, R.; BORGSTEIN, E.; YUKIZAKI, A. Y. G.; MAIA, A. C. B.; SOARES, J. B.; SANTOS JUNIOR, A. Assessment of the energy consumption in non-residential building sector in Brazil. Energy and buildings, v. 273, p. 112371, Oct. 2022. DOI: https://doi.org/10.1016/j.enbuild.2022.112371.

GOMES, A. P. Método de avaliação do desempenho térmico de edifícios comerciais e residenciais em Light Steel Framing. 2012. 166 f. Tese (Doutorado em Ciências da Engenharia Civil) – Programa de Pós-graduação em Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2012. Disponível em: http://www.repositorio.ufop.br/handle/123456789/6032. Acesso em: 18 mai. 2023.

GOURLIS, G.; KOVACIC, I. Building information modelling for analysis of energy efficient industrial buildings – A case study. Renewable and Sustainable Energy Reviews, v. 68, Part. 2, p.953–963, Feb. 2017. DOI: https://doi.org/10.1016/j.rser.2016.02.009.

HERAVI, G.; FATHI, M.; FAEGHI, S. Evaluation of sustainability indicators of industrial buildings focused on petrochemical projects. Journal of Cleaner Production, v. 109, p. 92-107, Dec. 2015. DOI: https://doi.org/10.1016/j.jclepro.2015.06.133.

IDEL’CIK, I. Memento des pertes de charge: Coefficients de pertes de charge singulières. França: Eyrolles, 1969, 504 p. apud CLEZAR, C.; NOGUEIRA, A. Ventilação Industrial. 2. ed. Florianópolis: UFSC, 2009. 240 p.

IFFA, E.; TARIKU, F. Attic baffle size and vent configuration impacts on attic ventilation. Building and Environment, v. 89, p. 28-37, July 2015. DOI: https://doi.org/10.1016/j.buildenv.2015.01.028.

INCROPERA, F.; DEWITT, D.; BERGMAN, T.; LAVINE, A. Fundamentos de Transferência de Calor e de Massa. 6. ed. Rio de Janeiro: LTC, 2008. 664 p.

INMET. INSTITUTO NACIONAL DE METEOROLOGIA. Arquivos climáticos INMET 2016. 2016. Disponível em: https://labeee.ufsc.br/downloads/arquivos-climaticos/inmet2016. Acesso em: 17 jan. 2024.

ISO. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7243: 2017: Ergonomics of the thermal environment - Assessment of heat stress using the WBGT (wet bulb globe temperature) index. 3. ed. [s.l.], Genève: ISO, 2017. 18 p.

ISO. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7730:2005 - Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. 3. ed. Genève: ISO[s.l.], 2005, 52 p.

ISO. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 8996:2004 - Ergonomics of the thermal environment - Determination of metabolic rate. 2. ed. [s.l.], Genève: ISO, 2004, 24 p.

IZADYAR, N.; MILLER, W.; RISMANCHI, B.; GARCIA-HANSEN, V. Impacts of façade openings' geometry on natural ventilation and occupants’ perception: A review. Building and Environment, v. 170, p.106613, Mar. 2020. DOI: https://doi.org/10.1016/j.buildenv.2019.106613.

KAKAEI, H.; OMIDI, F.; GHASEMI, R.; SABET, M.; GOLBABAEI, F. Changes of WBGT as a heat stress index over the time: A systematic review and meta-analysis. Urban Climate, v. 27, p. 284–292, Mar. 2019. DOI: https://doi.org/10.1016/j.uclim.2018.12.009.

LACCHINI, A. S. Desempenho Termoenergético de Edificações Industriais. 2010. 206 f. Dissertação (Mestrado em Ciências da Arquitetura) – Faculdade de Arquitetura. Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010. Disponível em: http://hdl.handle.net/10183/31986http://hdl.handle.net/10183/31986. Acesso em: 18 mai. 2023.

LBNL. LAWRENCE BERKELEY NATIONAL LABORATORY. EnergyPlus engineering reference: EnergyPlus™ Version 22.1.0 Documentation. Berkeley: LBNL; U.S. Department of Energy, 2022. Disponível em: https://energyplus.net/assets/nrel_custom/pdfs/pdfs_v22.1.0/EngineeringReference.pdf. Acesso em: 17 jan. 2024.

LOURA, R. M. Procedimento de identificação de variáveis e análise de sua pertinência em avaliações termo energéticas de edificações. 2006. 212 f. Dissertação (Mestrado em Ciências e Técnicas Nucleares) – Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2006.

MACINTYRE. A. J. Ventilação industrial e controle da poluição. 2. ed. Rio de Janeiro: LTC, 1990, 416 p.

MAZON, A. A.; SILVA, R. G. O.; SOUZA, H. A. Ventilação natural em galpões: o uso de lanternins nas coberturas. REM: Revista Escola de Minas, v. 59, n. 2, p. 179-184, jun. 2006. DOI: https://doi.org/10.1590/S0370-44672006000200007.

MENG, X.; XIONG, H.; YANG, H.; CAO, Y. Dynamic prediction of indoor wet bulb globe temperature in an industrial workshop. Applied Thermal Engineering, v. 195, p.117219, Aug. 2021. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117219.

MENG, X.; XUE, S.; AN, K.; CAO, Y. Physiological Indices and subjective thermal perception of heat stress-exposed workers in an industrial plant. Sustainability, v. 14, n. 9, p. 5019, Apr. 2022. DOI: https://doi.org/10.3390/su14095019.

NEUFERT, E. Arte de proyectar em arquitectura. Barcelona: Gustavo Gili, SA, 2006. 672 p.

NEVES, L. Chaminé solar como elemento indutor de ventilação natural em edificações. 2012. 142 f. Tese (Doutorado em Ciências da Arquitetura Arquitetura, Tecnologia e Cidade) – Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas, 2012. Disponível em: DOI: https://doi.org/10.47749/T/UNICAMP.2012.866232.

VAN OVERBEKE, P.; VOGELEER, G.; MENDES, L.; BRUSSELMAN, E.; DEMEYER, P.; PIETERS, J. Methodology for airflow rate measurements in a naturally ventilated mock-up animal building with side and ridge vents. Energy and Buildings, v .105, p. 153-163, Aug. 2016. DOI: http://dx.doi.org/10.1016/j.buildenv.2016.05.036.

PU, J.; YUAN, Y.; JIANG, F.; ZHENG, K.; ZHAO, K. Buoyancy-driven natural ventilation characteristics of thermal corridors in industrial buildings. Journal of Building Engineering, v. 50, p. 104107, June 2022. DOI: https://doi.org/10.1016/j.jobe.2022.104107.

SCIGLIANO, S.; HOLLO, V. IVN - Índice de ventilação natural: Conforto térmico em edifícios comerciais e industriais em regiões de clima quente. São Paulo: Pini, 2001, 279 p.

SWAMI, M. V.; CHANDRA, S. Correlations for pressure distribution of buildings and calculation of natural-ventilation airflow. Ashrae Transactions, v. 94, pt. 1, p. 243-266, 1988. Disponível em: https://www.aivc.org/sites/default/files/airbase_3362.pdf. Acesso em: 17 jan. 2024.

TEIMORI, G.; MONAZZAM, M. R.; NASSIRI, P.; GOLBABAEI, F.; DEHGHAN, S. F.; GHANNADZADEH, M. J.; ASGHARI, M. Applicability of the model presented by Australian Bureau of Meteorology to determine WBGT in outdoor workplaces: A case study. Urban Climate, v. 32, p. 100609, June 2020. DOI: https://doi.org/10.1016/j.uclim.2020.100609.

TIAN, G.; FAN, Y.; WANG, H.; PENG, K.; ZHANG, X.; ZHENG, H. Studies on the thermal environment and natural ventilation in the industrial building spaces enclosed by fabric membranes: A case study. Journal of Building Engineering, v. 32, p. 101651, Nov. 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101651.

TINÔCO, I. Avicultura Industrial: Novos conceitos de materiais, concepções e técnicas construtivas disponíveis para galpões avícolas brasileiros. Brazilian Journal of Poultry Science, Campinas, v. 3, n. 1, p. 1-26, jan. 2001. DOI: https://doi.org/10.1590/S1516-635X2001000100001.

WANG, Y.; GAO, J.; XING, X.; LIU, Y.; MENG, X. Measurement and evaluation of indoor thermal environment in a naturally ventilated industrial building with high temperature heat sources. Building and Environment, v. 96, p.35–45, Feb. 2016. DOI: https://doi.org/10.1016/j.buildenv.2015.11.014.

WANG, Y.; ZHAO, T.; CAO, Z.; ZHAI, C.; WU, S.; ZHANG, C.; ZHANG, Q.; LV, W. The influence of indoor thermal conditions on ventilation flow and pollutant dispersion in downstream industrial workshop. Building and Environment, v. 187, p. 107400, Jan. 2021. DOI: https://doi.org/10.1016/j.buildenv.2020.107400.

ZHANG, H.; YANG, D.; TAM, V. W. Y.; TAO, Y.; ZHANG, G.; SETUNGE, S.; SHI, L. A critical review of combined natural ventilation techniques in sustainable buildings. Renewable and Sustainable Energy Reviews, v. 141, p. 110795, May 2021. DOI: https://doi.org/10.1016/j.rser.2021.110795.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.