Banner Portal
Feasibility of the application of a two-phase thermosyphon for passive cooling of internal environments
Neste volume apresentamos na capa a Residência para professores em Gando, Burkina Faso. Projetada por Francis Kéré. Imagem do Wikimedia Commons
PDF (Português (Brasil))

Keywords

Test cell
Two-phase thermosiphon
Passive cooling
Bioclimatic strategy

How to Cite

ALMEIDA, Fernando da Silva; BRANDALISE, Mariane Pinto; FUSO, Luciano Serconek; CISTERNA, Luis Hernán Rodríguez; MANTELLI, Marcia Barbosa Henriques; MIZGIER, Martin Ordenes. Feasibility of the application of a two-phase thermosyphon for passive cooling of internal environments. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 14, n. 00, p. e023021, 2023. DOI: 10.20396/parc.v14i00.8672200. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8672200. Acesso em: 17 may. 2024.

Abstract

Research shows that the world faces global warming, which is expected to be irreversible by the end of this century. With the temperature elevation, the need to cool internal ambient in buildings increases, and new energy-saving technologies must be employed. Thus, investigating and proposing new passive cooling methods is needed. The present study aims to evaluate the feasibility of applying two-phase thermosyphons to cool indoor environments. For this, a test cell integrated with a copper coil, which simulated the evaporator section of a thermosyphon, was experimentally studied. A temperature-controlled thermal bath kept the coil temperature at a prescribed and uniform temperature along its length. Overall, the device was able to extract heat passively. The device managed to reduce the temperature of the indoor air significantly. Much of the heat was extracted in the first hour of the test and, in some cases, in the initial first and halt hours. However, less heat was removed when the temperature difference between the coil and the cell was equal to or less than 7°C. A similarity in the internal air temperature distributions in all tests was observed, with a higher temperature level at the upper quadrants of the cell. The speed of stabilization of the temperatures of the internal faces coincided when the temperature of the copper coil increased.

https://doi.org/10.20396/parc.v14i00.8672200
PDF (Português (Brasil))

References

AHMED, I. S.; JUBORI, A. M. Assessment of heat transfer and flow characteristics of a two‐phase closed thermosiphon. Heat Transfer, v. 50, n. 2, p. 1351-1370, Sept. 2020. DOI: https://dx.doi.org/10.1002/htj.21933.

ALIZADEH, M.; SADRAMELI, S. M. Development of free cooling based ventilation technology for buildings: thermal energy storage (TES) unit, performance enhancement techniques and design considerations: a review. Renewable and Sustainable Energy Reviews, v. 58, p. 619-645, May 2016. DOI: https://dx.doi.org/10.1016/j.rser.2015.12.168.

ALIZADEHDAKHEL, A.; RAHIMI, M.; ALSAIRAFI, A. A. CFD modeling of flow and heat transfer in a thermosyphon. International Communications in Heat and Mass Transfer, v. 37, n. 3, p. 312-318, Mar. 2010. DOI: https://dx.doi.org/10.1016/j.icheatmasstransfer.2009.09.002.

ALLEN, M. R.; MUSTAFA, B.; CHEN, Y.; CONINCK, H.; CONNORS, S. et al. An IPCC Special Report on the impacts of global warming of 1.5°C. Geneva: Intergovernmental Panel on Climate Chang, 2021. Disponível em: https://www.ipcc.ch/sr15/chapter/spm/. Acesso em: 1 maio 2022.

AMANOWICZ, Ł. Controlling the Thermal Power of a Wall Heating Panel with Heat Pipes by Changing the Mass Flowrate and Temperature of Supplying Water - Experimental Investigations. Energies, v. 13, n. 24, p. 6547, Dec. 2020. DOI: https://dx.doi.org/10.3390/en13246547.

BELLANI, P.; MILANEZ, F.; MANTELLI, M. B. H.; FILIPPESCHI, S.; MAMELI, M.; FANTOZZI, F. Theoretical and experimental analyses of the thermal resistance of a loop thermosyphon for passive solar heating of buildings. Interfacial Phenomena and Heat Transfer, v. 7, n. 1, p. 57-68, 2019. DOI: https://dx.doi.org/10.1615/interfacphenomheattransfer.2019031160.

BERGMAN, T. L.; LAVINE, A. D.; INCROPERA, F. P.; DEWITT, D. P. Fundamentos de transferência de calor e de massa. 7. ed. Rio de Janeiro: LTC, 2014. 672 p.

BIASI, J. A.; KRÜGER, E. L. Estudo do desempenho térmico de células-teste enterrada e semienterrada. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 10, p. e019023, 2019. DOI: https://doi.org/10.20396/parc.v10i0.8653908.

BLET, N.; LIPS, S.; SARTRE, V. Heats pipes for temperature homogenization: a literature review. Applied Thermal Engineering, v. 118, p. 490-509, May 2017. DOI: https://dx.doi.org/10.1016/j.applthermaleng.2017.03.009.

CATTARIN, G.; CAUSONE, F.; KINDINIS, A.; PAGLIANO, L. Outdoor test cells for building envelope experimental characterisation – A literature review. Renewable and Sustainable Energy Reviews, v. 54, p. 606-625, Feb. 2016. DOI: https://dx.doi.org/10.1016/j.rser.2015.10.012.

EPE. EMPRESA DE PESQUISA ENERGÉTICA. Balanço Energético Nacional 2021: ano base 2020. Rio de Janeiro: EPE, 2021. 268 p. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf. Acesso em: 13 maio 2022.

FANTOZZI, F.; FILIPESCHI, F.; MAMELI, M.; NESI, S.; CILLARI, G.; MANTELLI, M. B. H.; MILANEZ, F. H. An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings. Journal of Physics: Conference Series, v. 796, p.012043-012054, 2017. DOI: https://dx.doi.org/10.1088/1742-6596/796/1/012043.

GONG, Q.; KOU, F.; SUN, X.; ZOU, Y.; MO, J.; WANG, X. Towards zero energy buildings: a novel passive solar house integrated with flat gravity-assisted heat pipes. Applied Energy, v. 306, part A, p. 117981, Jan. 2022. DOI: https://dx.doi.org/10.1016/j.apenergy.2021.117981.

IEA. INTERNATIONAL ENERGY AGENCY. 2021 Global Status Report for Buildings and Construction: toward a zero-emissions, efficient and resilient buildings and construction sector. Paris: International Energy Agency, 2021. Disponível em: https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction. Acesso em: 1 maio 2022.

JOUHARA, H.; CHAUHAN, A.; NANNOU, T.; ALMAHMOUD, S.; DELPECH, B.; WROBEL, L. C. Heat pipe based systems - Advances and applications. Energy, v. 128, p. 729-754, June 2017. DOI: https://doi.org/10.1016/j.energy.2017.04.028.

JUNIOR, A. A. M.; MANTELLI, M. B. H. Thermal performance of a novel flat thermosyphon for avionics thermal management. Energy Conversion and Management, v. 202, p. 112219, Dec. 2019. DOI: https://doi.org/10.1016/j.enconman.2019.112219.

KRAJčÍK, M.; ŠIMKO, M.; ŠIKULA, O.; SZABÓ, D.; PETRÁŠ, D. Thermal performance of a radiant wall heating and cooling system with pipes attached to thermally insulating bricks. Energy and Buildings, v. 246, p. 111122, Sept. 2021. DOI: https://dx.doi.org/10.1016/j.enbuild.2021.111122.

KUMAR, A.; TIWARI, A. K.; SAID, Z. A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM. Sustainable Energy Technologies and Assessments, v. 47, p. 101417, Oct. 2021. DOI: https://dx.doi.org/10.1016/j.seta.2021.101417.

LI, Z.; ZHANG, D.; LI, C. Experimental Study on Thermal Response Characteristics of Indoor Environment with Modular Radiant Cooling System. Energies, v. 13, n. 19, p. 5012, Sept. 2020. DOI: https://doi.org/10.3390/en13195012.

LIU, C.; ZHANG, Z.; SHI, Y.; DING, Y. Optimisation of a wall implanted with heat pipes and applicability analysis in areas without district heating. Applied Thermal Engineering, v. 151, p.486-494, Mar. 2019. DOI: https://dx.doi.org/10.1016/j.applthermaleng.2019.01.108.

MANTELLI, M. B. H. Thermosyphons and Heat Pipes: theory and applications. New York: Springer, 2021. p. 1-413.

NOIE, S. H. Heat transfer characteristics of a two-phase closed thermosyphon. Applied Thermal Engineering, v. 25, n. 4, p. 495-506, Mar. 2005. DOI: https://dx.doi.org/10.1016/j.applthermaleng.2004.06.019.

NURLYBEKOVA, G.; MEMON, S. A.; ADILKHANOVA, I. Quantitative evaluation of the thermal and energy performance of the PCM integrated building in the subtropical climate zone for current and future climate scenario. Energy, v. 219, p. 119587-119596, Mar. 2021. DOI: https://dx.doi.org/10.1016/j.energy.2020.119587.

ROBINSON, B. S.; SHARP, M. K. Reducing unwanted thermal gains during the cooling season for a solar heat pipe system. Solar Energy, v. 115, p. 16-32, May 2015. DOI: https://dx.doi.org/10.1016/j.solener.2015.02.011.

RODRÍGUEZ CISTERNA, L. H. Análise de um secador de ervas finas assistido por termossifões. 2014. 284 p. Dissertação (Mestrado em Engenharia Mecânica) - Curso de Engenharia Mecânica, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, 2014. Disponível em: https://repositorio.ufsc.br/xmlui/handle/123456789/132425. Acesso em: 10 ago. 2023.

SARMIENTO, A. P. C.; RODRÍGUEZ CISTERNA, L. H.; MILANESE, F.H.; MANTELLI, M.B.H. A numerical method for shell and thermosyphon heat exchanger analysis. In: MINSK INTERNACIONAL SEMINAR “HEAT PIPES, HEAT PUMPS, REFRIGERATORS, POWER SOURCES”, 10. Minsk. Proceedings […]. Minsk: National Academy of Sciences of Belarus, 2018.

SUN, Z.; ZHANG, Z.; DUAN, C. The applicability of the wall implanted with heat pipes in winter of China. Energy and Buildings, v. 104, p. 36-46, Oct. 2015. DOI: https://dx.doi.org/10.1016/j.enbuild.2015.06.082.

TAN, R.; ZHANG, Z. Heat pipe structure on heat transfer and energy saving performance of the wall implanted with heat pipes during the heating season. Applied Thermal Engineering, v. 102, p. 633-640, June 2016. DOI: https://dx.doi.org/10.1016/j.applthermaleng.2016.03.085.

WEI, H.; CAIRIU, Y.; JICHUN, Y.; BENDONG, Y.; ZHONGTING, H.; DONGMEI, S.; XIANGHUA, L.; MINGHUI, Q.; HONGBING, C. Experimental study on the performance of a novel RC-PCM-wall. Energy and Buildings, v. 199, p. 297-310, Sept. 2019. DOI: https://doi.org/10.1016/j.enbuild.2019.07.001.

YANG, L.; QIAO, Y.; LIU, Y.; ZHANG, X.; ZHANG, C.; LIU, J. A kind of PCMs-based lightweight wallboards: Artificial controlled condition experiments and thermal design method investigation. Building and Environment, v. 144, p. 194-207, Oct. 2018. DOI: https://dx.doi.org/10.1016/j.buildenv.2018.08.020.

ZHANG, Z.; DING, Y.; GUO, C. Dynamic heat transfer performance of the wall implanted with heat pipes and its energy saving characteristics during the heating season. Energy Procedia, v. 158, p. 1155-1160, Feb. 2019. DOI: https://dx.doi.org/10.1016/j.egypro.2019.01.297.

ZHANG, Z.; LI, Z. Heat transfer performance of the Trombe wall implanted with heat pipes during daytime in winter. Science and Technology for the Built Environment, v. 25, n. 7, p.935-944, May 2019. DOI: https://dx.doi.org/10.1080/23744731.2018.1538901.

ZHANG, Z.; LIU, Q.; YAO, W.; ZHANG, W.; CAO, J.; HE, H. Research on temperature distribution characteristics and energy saving potential of wall implanted with heat pipes in heating season. Renewable Energy, v. 195, p. 1037-1049, Aug. 2022. DOI: https://dx.doi.org/10.1016/j.renene.2022.06.054.

ZHANG, Z; SUN, Z; DUAN, C. A new type of passive solar energy utilization technology - The wall implanted with heat pipes. Energy and Buildings, v. 84, p.111-116, Dec. 2014. DOI: https://dx.doi.org/10.1016/j.enbuild.2014.08.016.

ZHONG, W.; JI, W. Applications of coupling thermosyphons with phase change materials: A review. Energy and Buildings, v. 233, p. 110690-110708, Feb. 2021. DOI: https://dx.doi.org/10.1016/j.enbuild.2020.110690.

ZHU, L.; YANG, Y.; CHEN, S.; SUN, Y. Thermal performances study on a façade-built-in two-phase thermosyphon loop for passive thermo-activated building system. Energy Conversion and Management, v. 199, p.112059-112075, Nov. 2019. DOI: https://dx.doi.org/10.1016/j.enconman.2019.112059.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.