Banner Portal
Influence of PCM application in an office building in Brazilian climates
PDF

Keywords

PCM
EnergyPlus
Adaptive thermal comfort
Office
Thermal inertia

How to Cite

OLIVEIRA, Matheus Menezes; LUCARELLI, Caio de Carvalho; CARLO, Joyce Correna. Influence of PCM application in an office building in Brazilian climates. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 15, n. 00, p. e024006, 2024. DOI: 10.20396/parc.v15i00.8673208. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8673208. Acesso em: 17 jul. 2024.

Abstract

This study presents a comprehensive literature review on integrating Building Information Modeling (BIM) within the Brazilian Building Labeling Program (PBE Edifica), focusing on challenges, workflows, and research gaps. Emphasizing the advantages of BIM in PBE Edifica, this research highlights its effectiveness in data extraction, automation, and visualization tasks. Challenges encompass the absence of standardized practices for integrating BIM with Building Energy Modeling (BEM), interoperability issues, and limited exploration of universal standards, such as Industry Foundation Classes (IFC). The identified challenges involve disparities in simulation outcomes, concerns about BIM model reliability for energy assessments, and complexities in direct and indirect BIM-BEM exports. Future research should consider in-depth investigations into BIM tool intricacies, a comprehensive understanding of data syntax and semantics, and strict adherence to modeling guidelines. This study highlights the crucial connection between design processes and energy efficiency by encouraging the exploration of BIM as a methodological approach. Moreover, there is a need to develop standardized guidelines for BIM modeling, enhanced OpenBIM tools to improve interoperability, and the exploration of ontologies and machine learning for optimized data exchange. The research recommends a broader approach to address technical aspects for successfully integrating BIM in building energy assessments within the Brazilian context.

https://doi.org/10.20396/parc.v15i00.8673208
PDF

References

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TECNICAS. NBR 15220-3. Desempenho térmico de edificações Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. Rio de Janeiro: ABNT, 2005. 8 p.

AL-JANABI, A.; KAVGIC, M. Application and sensitivity analysis of the phase change material hysteresis method in EnergyPlus: A case study. Applied Thermal Engineering, v. 162, p. 114222, Nov. 2019. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114222.

AL-WAELI, A.; KASEM, H. A.; YOUSIF, J. H.; CHAICHAN, M. T.; SOPIAN, K. Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable Energy, v. 145, p. 963-980, Jan. 2020. DOI: https://doi.org/10.1016/j.renene.2019.06.099.

AL-YASIRI, Q.; SZABÓ, M. Case study on the optimal thickness of phase change material incorporated composite roof under hot climate conditions. Case Studies in Construction Materials, v. 14, p. e00522, June 2021. DOI: https://doi.org/10.1016/j.cscm.2021.e00522.

ASHRAE. AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS. Standard 55: Thermal environmental conditions for human occupancy. Atlanta: ASHRAE, 2020.

ASHRAE. AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS. Standard 140: Standard method of test for the evaluation of building energy analysis computer programs. Atlanta: ASHRAE, 2017.

BAI, L.; XIE, J.; FARID, M. M.; WANG, W.; LIU, J. Analytical model to study the heat storage of phase change material envelopes in lightweight passive buildings. Building and Environment, v. 169, p. 106531, July 2020. DOI: https://doi.org/10.1016/j.buildenv.2019.106531.

BERARDI, U.; SOUDIAN, S. Experimental investigation of latent heat thermal energy storage using PCMs with different melting temperatures for building retrofit. Energy and Buildings, v. 185, p. 180–195, Feb. 2019. DOI: https://doi.org/10.1016/j.enbuild.2018.12.016.

BRITO, A. C.; AKUTSU, M.; SALLES, E. M; CASTRO, G. M. Características térmicas de materiais de mudança de fase adequados para edificações brasileiras. Ambiente Construído, v. 17, n. 1, p. 125–145, jan.-mar. 2017. DOI: http://dx.doi.org/10.1590/s1678-86212017000100128.

CUNHA, S. R. L.; AGUIAR, J. L. B. Phase change materials and energy efficiency of buildings: A review of knowledge. Journal of Energy Storage, v. 27, p. 101083, Nov. 2020. DOI: https://doi.org/10.1016/j.est.2019.101083.

ENERGYPLUS. EnergyPlus Version 9.3.0: Documentation Disponível em: https://energyplus.net/downloads. Acesso em: 20 out. 2023.

FARAJ, K.; KHALED; M.; FARAJ, J.; HACHEM, F.; CASTELAIN, C. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renewable and Sustainable Energy Reviews, v. 119, p. 109579, Mar. 2020. DOI: https://doi.org/10.1016/j.rser.2019.109579.

FRIGIONE, M.; LETTIERI, M.; SARCINELLA, A. Phase change materials for energy efficiency in buildings and their use in mortars. Materials, v. 12, n. 8, p. 1260, Apr. 2019. DOI: https://doi.org/10.3390/ma12081260.

HLANZE, P.; ELHEFNY, A.; JIANG, Z.; CAI, J.; SHABGARD, H. In-duct phase change material-based energy storage to enhance building demand flexibility. Applied Energy, v. 310, Sept. 2021, p. 118520, Mar. 2022. DOI: https://doi.org/10.1016/j.apenergy.2022.118520.

INMET. INSTITUTO NACIONAL DE METEOROLOGIA. Dados Históricos Anuais, 2021. Disponível em: https://portal.inmet.gov.br/dadoshistoricos. Acesso em: 20 jan. 2023.

JANGELDINOV, B.; MEMON, S.; KIM, J; KABDRAKHMANOVA, M. Evaluating the Energy Efficiency of PCM-Integrated Lightweight Steel-Framed Building in Eight Different Cities of Warm Summer Humid Continental Climate. Advances in Materials Science and Engineering, v. 2020, n. 4381495, Mar. 2020. DOI: https://doi.org/10.1155/2020/4381495.

JIN, X; SHI, D.; MEDINA, M.; SHI, X.; ZHOU, X.; ZHANG, X. Optimal location of PCM layer in building walls under Nanjing (China) weather conditions. Journal of Thermal Analysis and Calorimetry, v. 129, p. 1767–1778, Mar. 2017. DOI: https://doi.org/10.1007/s10973-017-6307-3.

KIM, H. B.; MAE, M.; CHOI, Y.; KIYOTA, T. Experimental analysis of thermal performance in buildings with shape-stabilized phase change materials. Energy and Buildings, v.152 p. 524–533,Oct. 2017. DOI: http://dx.doi.org/10.1016/j.enbuild.2017.07.076.

KISHORE, R. A.; BIANCHI, M. V. A.; BOOTEN, C.; VIDAL, J.; JACKSON, R. Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings. Applied Thermal Engineering, v. 187, 116568, Mar. 2021. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116568.

LEE, K. O.; MEDINA, M, A.; SUN, X.; JIN, X. Thermal performance of phase change materials (PCM) - enhanced cellulose insulation in passive solar residential building walls. Solar Energy, v. 163, p. 113–121, Mar. 2018. DOI: https://doi.org/10.1016/j.solener.2018.01.086.

LIU, J.; LIU, Y.; YANG, L.; LIU, T.; ZHANG, C.; DONG, H. Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China. Renewable Energy, v. 147, p. 1, p. 356–373, Mar. 2020. DOI: https://doi.org/10.1016/j.renene.2019.08.069.

MARIN, P.; SAFFARI M.; GRACIA, A.; ZHU, X.; FARID, M. M.; CABEZA, L.; USHAK, S. Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy and Buildings, v. 129, p. 274–283, Oct. 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.08.007.

MENG, E.; YU, H.; ZHOU, B. Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter. Applied Thermal Engineering, v. 126, p. 212–225, Nov. 2017. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.07.110.

MENGJIE, S.; FUXIN, N.; NING, M.; YANXIN, H.; SHIMING, D. Review on building energy performance improvement using phase change materials. Energy and Buildings, v. 158, p. 776–793, Jan. 2018. DOI: https://doi.org/10.1016/j.enbuild.2017.10.066.

OLIVEIRA, M. M. Investigação da influência dos materiais de mudança de fase no conforto térmico em modelo de escritório nos climas brasileiros. 2023. 197f. Tese (Doutorado em Arquitetura e Urbanismo) – Departamento de Arquitetura e Urbanismo, Universidade Federal de Viçosa, Viçosa, 2023

OLIVEIRA, M. M.; CARLO, J. C. Avaliação do conforto térmico e renovação de ar em ambientes com chaminés solares. Ambiente Construído, v. 21, n. 1, p. 293–314, 2020. DOI: https://doi.org/10.1590/s1678-86212021000100506.

OLIVEIRA, M. M.; LUCARELLI, C. C.; CARLO, J. C. Uso de materiais de mudança de fase em sistemas construtivos: revisão integrativa de literatura. Ambiente Construído, v. 22, n. 3, p. 67–111, jul.-set. 2022. DOI: https://doi.org/10.1590/s1678-86212022000300610.

PEREIRA, E. B.; MARTINS, F. R.; GONÇALVES, A. R.; COSTA, R. S.; LIMA, F. J. L.; RÜTHER, R.; ABREU, S. L.; TIEPOLO, G. M.; PEREIRA, S. V.; SOUZA, J. G. Atlas brasileiro de energia solar. 2. ed. Inpe: São José dos Campos, 2017.

PONS, V.; STANESCU, G. Materiais com mudança de fase: análise de desempenho energético para o Brasil. PARC Pesquisa em Arquitetura e Construção, v. 8, n. 2, p. 127, jun. 2017. DOI: http://dx.doi.org/10.20396/parc.v8i2.8650228.

RATHORE, P. K. S.; SHUKLA, S. K. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials, v. 225, p. 723–744, Nov. 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.221.

RUBITHERM. PCM RT - LINE. Berlim, 2022. Disponível em: https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt. Acesso em março de 2022.

SAFFARI, M.; GRACIA, A.; FERNÁNDEZ, C.; CABEZA, L. Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, v. 202, p. 420–434, Sept. 2017a. DOI: http://dx.doi.org/10.1016/j.apenergy.2017.05.107.

SAFFARI, M.; GRACIA, A.; USHAK, S.; CABEZA, L. Passive cooling of buildings with phase change materials using whole building energy simulation tools: A review. Renewable and Sustainable Energy Reviews, v. 80, p. 1239–1255, Dec. 2017b. DOI: http://dx.doi.org/10.1016/j.rser.2017.05.139.

SHARMA, V.; RAI, A. C. Performance assessment of residential building envelopes enhanced with phase change materials. Energy and Buildings, v. 208, p. 109664, Feb. 2020. DOI: https://doi.org/10.1016/j.enbuild.2019.109664.

SOLGI, E.; HAMEDANI, Z.; FERNANDO, R.; KARIB, B.; SKATES, H. A parametric study of phase change material behaviour when used with night ventilation in different climatic zones. Building and Environment, v. 147, p. 327–336, Oct. 2019. DOI: https://doi.org/10.1016/j.buildenv.2018.10.031.

SOVETOVA, M.; MEMON, S. A.; KIM, J. Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Solar Energy, v. 189, p. 357–371, Apr. 2019. DOI: https://doi.org/10.1016/j.solener.2019.07.067.

TABARES-VELASCO, P. C.; CHRISTENSEN, C.; BIANCHI M. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, v. 54, p. 186-196, Aug. 2012. DOI: http://dx.doi.org/10.1016/j.buildenv.2012.02.019.

WAHID, M. A.; HOSSEINI, S. E.; HUSSEN, H. M.; AKEIBER, H. J.; SAUD, S. N.; MOHAMMAD, T. A. An overview of phase change materials for construction architecture thermal management in hot and dry climate region. Applied Thermal Engineering, v. 112, p. 1240–1259, Feb. 2017. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.032.

WANG, H.; LU, W.; WU, Z.; ZHANG, G. Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai. Renewable Energy, v. 145, p. 52–64, Jan. 2020. DOI: https://doi.org/10.1016/j.renene.2019.05.124.

YE, R.; JIANG, H.; WANG, J.; YANG, X.; SHU, X. Fabrication and characteristics of eutectic hydrated salts/fumed silica composite as form-stable phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, v. 238, p. 111584, May 2022. DOI: https://doi.org/10.1016/j.solmat.2022.111584.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.