Banner Portal
Avaliação dos efeitos microclimáticos de diferentes zonas climáticas locais em cidade de clima temperado
PDF

Palavras-chave

Clima urbano
Zonas climáticas locais
LCZ

Como Citar

KRÜGER, Eduardo; PEREIRA, Natasha Hansen Gapski. Avaliação dos efeitos microclimáticos de diferentes zonas climáticas locais em cidade de clima temperado. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 11, p. e020019, 2020. DOI: 10.20396/parc.v11i0.8658794. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8658794. Acesso em: 19 abr. 2024.

Resumo

O clima urbano é influenciado por características morfológicas e de uso e ocupação do solo. Aspectos como grau de verticalização, presença de vegetação e adensamento urbano influenciam diretamente sobre variáveis climáticas, gerando microclimas diferenciados na área urbana. Em relação ao conforto ambiental humano, a possibilidade de se prever fenômenos do clima urbano orienta decisões projetuais arquitetônicas e urbanísticas. Esta pesquisa teve por objetivo analisar diferenças térmicas intraurbanas a partir de dados meteorológicos coletados em estações amadoras participantes da rede Weather Underground, localizadas em diferentes zonas climáticas locais (Local Climate Zones - LCZs) em Londres, Inglaterra. Utilizaram-se dados meteorológicos de dez estações distribuídas nos eixos leste-oeste e norte-sul. Avaliou-se se as variações nos microclimas são significativas o bastante para suprir a demanda de energia para aquecimento e resfriamento de edificações, por meio do somatório de graus-hora de aquecimento e resfriamento para cada ponto. Pela análise do perfil longitudinal das temperaturas, a pesquisa constatou a formação de ilhas de calor nos locais com maior intensidade de uso e ocupação e menor cobrimento vegetal. Com relação à demanda por climatização artificial, notaram-se diferenças consideráveis em função da LCZ de cada ponto.

https://doi.org/10.20396/parc.v11i0.8658794
PDF

Referências

AGUILAR, E.; AUER, I.; BRUNET, M.; PETERSON, T. C.; WIERINGA, J. Guidance on metadata and homogenization. WMO/TD No. 1186. Geneva: Weather Meteorological Organization, 2003. 53 p.

ARNFIELD, A. J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, v. 23, p.1-26, 2003. DOI:https://doi.org/10.1002/joc.859

BELL, S.; CORNFORD, D.; BASTIN, L. The state of automated amateur weather observations. Weather, v. 68, n. 2, p. 36-41, 2013. DOI:https://doi.org/10.1002/wea.1980

BUCKLEY, N. WUDAPT level 0 London: Datasheet for WUDAPT Level 0 Product, v. 0.33. World Urban Database and Access Portal Tools. 12 jun. 2017. [Training data London_NialBuckly_TK_MF_20170612]. Disponível em: https://wudapt.cs.purdue.edu/wudaptTools/static/Layers/London/html/__factsheet.html. Acesso em: 3 jul. 2020

CAI, M. et al. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology–A case study of Yangtze River Delta, China. Urban Climate, v. 24, p. 485-502, 2018. DOI:https://doi.org/10.1016/j.uclim.2017.05.010

CARBON TRUST. Degree days for energy management: A practical introduction. London: Carbon Trust, 2010. Disponível em: http://lowcarbonswansea.weebly.com/uploads/5/8/4/7/5847606/ctg004.pdf. Acesso em: 16 dez. 2019.

CARDOSO, R.S.; AMORIM, M.C.C.T. Urban heat island analysis using the ‘local climate zone’ scheme in Presidente Prudente, Brazil. Investigaciones Geográficas, v. 69, 2018. DOI: http://dx.doi.org/10.14198/INGEO2018.69.07

CHAPMAN, L. et al. The Birmingham urban climate laboratory: An open meteorological test bed and challenges of the Smart City. Bulletin of the American Meteorological Society, v. 96, n. 9, p.1545-1560, 2015. DOI:https://doi.org/10.1175/BAMS-D-13-00193.1

CHAPMAN, L.; BELL, C.; BELL, S. Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. International Journal of Climatology, v. 37, n. 9, p.3597-3605, 2017. DOI:https://doi.org/10.1002/joc.4940

CLOUT, H.D. et al. London. In: ENCYCLOPÆDIA Britannica. Chicago: Britannica. 2019. Disponível em: https://www.britannica.com/place/London. Acesso em: 28 jun. 2020.

EMMANUEL, R.; KRÜGER, E. Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK, Building and Environment, v. 53, p.137-149, jul. 2012. DOI:https://doi.org/10.1016/j.buildenv.2012.01.020

FERREIRA, L. S.; DUARTE, D. H. S. Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity. Urban Climate, v. 27, p. 105-123, 2019. DOI:https://doi.org/10.1016/j.uclim.2018.11.002

GALARUS, D. E.; ANGRYK, R.; SHEPPARD, J. Automated Weather Sensor Quality Control. In: INTERNATIONAL FLAIRS CONFERENCE FLAIRS, 25., 2012, Florida. Proceedings […]. Florida: FLAIRS, 2012. p. 388-393.

GELETIC, J.. Local climate zones in London, ResearchGate, 2016. [ZIP archive contains LCZ layer created using Stewart and Oke (2012) classification]. Disponível em: https://doi.org/10.13140/RG.2.2.25121.20328. Acesso em 10 jun. 2018.

GELETIC, J.; LEHNERT, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports, v. 24, n. 3, p. 2-12, set. 2016. DOI:https://doi.org/10.1515/mgr-2016-0012

KOLOKOTRONI, M.; GIRIDHARAN, R. Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy, v. 82, n. 11, p. 986–998, nov. 2008. DOI:https://doi.org/10.1016/j.solener.2008.05.004

KOTTEK, M. et al. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, v. 15, n. 3, p. 259–263, 10 jul. 2006. DOI:https://dx.doi.org/10.1127/0941-2948/2006/0130

LELOVICS, E. et al. Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Climate research, v. 60, n. 1, p. 51-62, 2014. DOI:https://doi.org/10.3354/cr01220

MASIERO, E.; SOUZA, L. C. L. Mapping humidity plume over local climate zones in a high-altitude tropical climate city, Brazil. Ambiente Construído, v. 18, n. 4, p. 177-197, 2018. DOI:https://doi.org/10.1590/s1678-86212018000400300

MILLS, G. Luke Howard and the climate of London. Weather, v. 63, n. 6, p. 153-157, jun. 2008. DOI:https://doi.org/10.1002/wea.195

OKE, T. R. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, v. 108, n. 455, p. 1-24, jan. 1982. DOI: https://doi.org/10.1002/qj.49710845502

OKE, T. R. Boundary layer climates. 2nd ed., Abingdon: Routledge, 2002. 435 p.

OKE, T. R. Initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization, 2004. (WMO/TD- No. 1250; IOM Report n. 81).

OKE, T. R. Towards better scientific communication in urban climate. Theoretical and Applied Climatology, v. 84, n. 1-3, p. 179-190, fev. 2006. DOI:https://doi.org/10.1007/s00704-005-0153-0

ŠEĆEROV, I. et al. Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geographica Pannonica, v. 19, n. 4, p. 174-183, 2015. DOI:https://doi.org/10.5937/GeoPan1504174S

SKARBIT, N. et al. Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. International Journal of Climatology, v. 37, p. 582–596, ago. 2017. DOI:https://doi.org/10.1002/joc.5023

STEWART, I. D. Classifying urban climate field sites by “Local Climate Zones”. Urban climate news, v. 34, n. 4, p. 8-11, dec. 2009. Disponível em: http://www.urban-climate.org/newsletters/IAUC034.pdf. Acesso em 23 jun. 2020.

STEWART, I. D. A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, v. 31, n. 2, p. 200-217, 2011. DOI:https://doi.org/10.1002/joc.2141

STEWART, I. D.; OKE, T. R. Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layer. In: SYMPOSIUM ON URBAN ENVIRONMENT, 8., 2009, Phoenix. Proceedings […]. Phoenix: AMS, 2009.

STEWART, I. D.; OKE; T. R. Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society. v. 93, n. 12, p. 1879-1900, mai. 2012. DOI: https://doi.org/10.1175/BAMS-D-11-00019.1

STEWART, I. D.; OKE, T. R.; KRAYENHOFF, E. S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology, v. 34, n. 4, p. 1062-1080, 2014. DOI:https://doi.org/10.1002/joc.3746

TEETS, Donald A. Predicting sunrise and sunset times. The College Mathematics Journal, v. 34, n. 4, p. 317-321, 2003.

UGEDA JÚNIOR, J. C.; AMORIM, M. C. C. T. Reflexões acerca do sistema clima urbano e sua aplicabilidade: pressupostos teórico-metodológicos e inovações técnicas. Revista do Departamento de Geografia, Universidade de São Paulo, n. spe, p. 160-174, 24 out. 2016. DOI:https://doi.org/10.11606/rdg.v0ispe.119402

XU, Y. et al. Classification of local climate zones using ASTER and Landsat data for high-density cities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 10, n. 7, p. 3397-3405, 2017. DOI:https://doi.org/10.1109/JSTARS.2017.2683484

YOW, D. M.; CARBONE, G. J. The urban heat island and local temperature variations in Orlando, Florida. Southeastern Geographer, Athens, v. 46, n. 2, p. 297-321, out. 2006. DOI:https://doi.org/10.1353/sgo.2006.0033

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 PARC Pesquisa em Arquitetura e Construção

Downloads

Não há dados estatísticos.