Desempenho térmico de fachadas ventiladas opacas

uma revisão sistemática

Autores

DOI:

https://doi.org/10.20396/parc.v13i00.8667308

Palavras-chave:

Desempenho térmico, Fachada ventilada opaca, Revisão sistemática de literatura

Resumo

As fachadas ventiladas têm sido apontadas como uma solução viável para melhoria do desempenho térmico de edifícios, beneficiando, assim, sua eficiência energética. Dentre os diversos tipos desse sistema, a literatura aponta uma escassez de estudos acerca das fachadas ventiladas opacas. Assim, este trabalho tem como objetivo reunir pesquisas sobre o desempenho térmico de fachadas ventiladas opacas por meio da Revisão Sistemática da Literatura (RSL), considerando o local onde as pesquisas foram feitas, o método utilizado e os principais parâmetros que influenciam no desempenho térmico dessas fachadas. A RSL se mostrou eficiente em traçar o panorama desejado, indicando que este modelo de fachada consiste em uma tecnologia explorada apenas recentemente no meio acadêmico, com pesquisas concentradas no continente europeu, principalmente na Espanha, Itália e Portugal, evidenciando o clima mediterrâneo como foco das pesquisas. A maior parte das pesquisas foi realizada com simulações computacionais, seguidos pelos métodos experimentais, que validaram os modelos matemáticos dos programas de simulação. Com a RSL, identificaram-se as condições externas e os aspectos da geometria que mais influenciam no desempenho térmico dessas fachadas. Dentre as condições do meio externo, a radiação solar e as estações do ano foram os parâmetros mais abordados nas pesquisas. Em relação à geometria da fachada, as aberturas na fachada ventilada (presença ou ausência de juntas e grelhas), a altura da cavidade e o material que compõe a camada externa foram as variáveis mais estudadas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Mariana Fortes Goulart, Universidade Estadual de Campinas

Doutorado em andamento em Arquitetura, Tecnologia e Cidade na Universidade Estadual de Campinas (Campinas - SP, Brasil).

Lucila Chebel Labaki, Universidade Estadual de Campinas

Doutorado em Física pela Universidade Estadual de Campinas. Professora Colaboradora na Universidade Estadual de Campinas (Campinas - SP, Brasil).

Referências

ALONSO, C.; OTEIZA, I.; GARCÍA-NAVARRO, J.; MARTÍN-CONSUEGRA, F. Energy consumption to cool and heat experimental modules for the energy refurbishment of façades. Three case studies in Madrid. Energy and Buildings, v. 126, p. 252-262, Aug. 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.04.034. DOI: https://doi.org/10.1016/j.enbuild.2016.04.034

APARICIO-FERNÁNDEZ, C.; VIVANCOS, J. L.; FERRER-GISBERT, P.; ROYO-PASTOR, R. Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering, v. 66, n. 1-2, p. 563-570, May 2014. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041. DOI: https://doi.org/10.1016/j.applthermaleng.2014.02.041

BALTER, J.; GANEM, C.; BAREA, G. Mejoras en el desempeño energético de edificios en verano mediante la integración de envolventes ventiladas en fachadas norte y cubiertas. El caso de Mendoza, Argentina. Hábitat Sustentable, v. 10, n. 2, p. 94-105, 30 Dec. 2020. DOI: https://doi.org/10.22320/07190700.2020.10.02.07. DOI: https://doi.org/10.22320/07190700.2020.10.02.07

BALTER, J.; PARDAL MARCH, C.; PARICIO ANSUATEGUI, I.; GANEM, C. Air cavity performance in Opaque Ventilated Façades in accordance with the Spanish Technical Building Code. Ace: Architecture, City and Environment, v. 13, n. 39, p. 211-232, feb. 2019. DOI: http://dx.doi.org/10.5821/ace.13.39.6487. DOI: https://doi.org/10.5821/ace.13.39.6487

BECK, H. E.; ZIMMERMANN, N. E.; McVICAR, T. R.; VERGOPOLAN, N.; BERG, A.; WOOD, E. F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, v. 5, 180214, Oct. 2018. DOI: https://doi.org/10.1038/sdata.2018.214. DOI: https://doi.org/10.1038/sdata.2018.214

DRESCH, A.; LACERDA, D. P.; ANTUNES JR, J. A. V. Design Science Research: A Method for Science and Technology Advancement. Cham: Springer International, 2015. p. 129–158, 2015. DOI: 10.1007/978-3-319-07374-3. DOI: https://doi.org/10.1007/978-3-319-07374-3_7

FANTUCCI, S.; MARINOSCI, C.; SERRA, V.; CARBONARO, C. Thermal Performance Assessment of an Opaque Ventilated Façade in the Summer Period: calibration of a simulation model through in-field measurements. Energy Procedia, v. 111, p. 619-628, Mar. 2017. DOI: http://dx.doi.org/10.1016/j.egypro.2017.03.224. DOI: https://doi.org/10.1016/j.egypro.2017.03.224

FANTUCCI, S.; SERRA, V.; CARBONARO, C. An experimental sensitivity analysis on the summer thermal performance of an Opaque Ventilated Facade. Energy and Buildings, v. 225, p. 110354, Oct. 2020. DOI: http://dx.doi.org/10.1016/j.enbuild.2020.110354. DOI: https://doi.org/10.1016/j.enbuild.2020.110354

GAGLIANO, A.; ANELI, S. Analysis of the energy performance of an Opaque Ventilated Façade under winter and summer weather conditions. Solar Energy, v. 205, p. 531–544, July 2020. DOI: http://dx.doi.org/10.1016/j.solener.2020.05.078 DOI: https://doi.org/10.1016/j.solener.2020.05.078

GAGLIANO, A.; NOCERA, F.; ANELI, S. Thermodynamic analysis of ventilated facades under different wind conditions in summer period. Energy and Buildings, v. 122, p. 131–139, June 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.04.035. DOI: https://doi.org/10.1016/j.enbuild.2016.04.035

GIANCOLA, E.; SANJUAN, C.; BLANCO, E.; HERAS, M. R. Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings, v. 54, p. 363-375, Nov. 2012. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035. DOI: https://doi.org/10.1016/j.enbuild.2012.07.035

GREGÓRIO-ATEM, C.; APARICIO-FERNÁNDEZ, C.; COCH, H.; VIVANCOS, J. L. Opaque Ventilated Facade (OVF) Thermal Performance Simulation for Office Buildings in Brazil. Sustainability, v. 12, n. 18, p. 7635, Sept. 2020. http://dx.doi.org/10.3390/su12187635. DOI: https://doi.org/10.3390/su12187635

GUILLÉN, I.; GÓMEZ-LOZANO, V.; FRAN, J. M.; LÓPEZ-JIMÉNEZ, P. A. Thermal behavior analysis of different multilayer facade: numerical model versus experimental prototype. Energy and Buildings, v. 79, p. 184-190, Aug. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.05.006. DOI: https://doi.org/10.1016/j.enbuild.2014.05.006

HARNANE, Y.; BOUZID, S.; BRIMA, A. Air Flow Thermal and Dynamic Behavior Inside Ventilated Cavities. International Journal of Automotive and Mechanical Engineering, v. 15, n. 3, p. 5652–5666, out. 2018. Disponível em: https://journal.ump.edu.my/ijame/article/view/94/69. Acesso em: 20 jun. 2022. DOI: https://doi.org/10.15282/ijame.15.3.2018.19.0434

IBAÑEZ-PUY, M.; VIDAURRE-ARBIZU, M.; SACRISTÁN-FERNÁNDEZ, J. A.; MARTÍN-GÓMEZ, C. Opaque Ventilated Facades: thermal and energy performance review. Renewable and Sustainable Energy Reviews, v. 79, p. 180-191, Nov. 2017. DOI: http://dx.doi.org/10.1016/j.rser.2017.05.059. DOI: https://doi.org/10.1016/j.rser.2017.05.059

IPCC. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2014: Synthesis Report. Geneva: IPCC, 2015. 169 p. Disponível em: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf. Acesso em: 20 feb. 2022.

IRIBARREN, V. E.; CASTELLÓ, G. G.; MAESTRE, C. R. Large format ceramic panels versus recycled aluminum casting panels: Improvement of the thermal behavior of the Museum of fine Arts of Castellón. International Journal of Engineering and Technology, v. 7, n. 4.5, p. 213–216, Feb. 2018. DOI: http://dx.doi.org/10.14419/ijet.v7i4.5.20048. DOI: https://doi.org/10.14419/ijet.v7i4.5.20048

IRIBAR-SOLABERRIETA, E.; ESCUDERO-REVILLA, C.; ODRIOZOLA-MARITORENA, M.; CAMPOS-CELADOR, A.; GARCÍA-GÁFARO, C. Energy Performance of the Opaque Ventilated Facade. Energy Procedia, v. 78, p. 55-60, Nov. 2015. DOI: http://dx.doi.org/10.1016/j.egypro.2015.11.114. DOI: https://doi.org/10.1016/j.egypro.2015.11.114

MACIEL, A. C. F.; CARVALHO, M. T. Operational energy of opaque ventilated façades in Brazil. Journal of Building Engineering, v. 25, p. 100775, Sept. 2019. http://dx.doi.org/10.1016/j.jobe.2019.100775. DOI: https://doi.org/10.1016/j.jobe.2019.100775

MANDAVINEJAD, M.; MOHAMMADI, S. Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate. Ukrainian Journal of Ecology, v. 8, n. 1, p. 273–281, 2018. Disponível em: https://cyberleninka.ru/article/n/ecological-analysis-of-natural-ventilated-facade-system-and-its-performance-in-tehrans-climate/viewer. Acesso em: 20 abr. 2022. DOI: https://doi.org/10.15421/2018_212

MARINOSCI, C.; SEMPRINI, G.; MORINI, G. L. Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings, v. 72, p. 280–287, Apr. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044. DOI: https://doi.org/10.1016/j.enbuild.2013.12.044

MARINOSCI, C.; STRACHAN, P. A.; SEMPRINI, G.; MORINI, G. L. Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings, v. 43, n. 4, p. 853-863, Apr. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2010.12.005. DOI: https://doi.org/10.1016/j.enbuild.2010.12.005

NORE, K.; BLOCKEN, B.; THUE, J.V. On CFD simulation of wind-induced airflow in narrow ventilated facade cavities: coupled and decoupled simulations and modelling limitations. Building and Environment, v. 45, n. 8, p. 1834-1846, Ago. 2010. DOI: http://dx.doi.org/10.1016/j.buildenv.2010.02.014. DOI: https://doi.org/10.1016/j.buildenv.2010.02.014

PASTORI, S.; MEREU, R.; MAZZUCCHELLI, E. S.; PASSONI, S.; DOTELLI, G. Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards. Energies, v. 14, n. 1, p. 193, Jan. 2021. DOI: http://dx.doi.org/10.3390/en14010193. DOI: https://doi.org/10.3390/en14010193

PATANIA, F.; GAGLIANO, A.; NOCERA, F.; FERLITO, A.; GALESI, A. Thermofluid-dynamic analysis of ventilated facades. Energy and Buildings, v. 42, n. 7, p. 1148-1155, July 2010. DOI: http://dx.doi.org/10.1016/j.enbuild.2010.02.006. DOI: https://doi.org/10.1016/j.enbuild.2010.02.006

PECI LÓPEZ, F. P.; JENSEN, R.L.; HEISELBERG, P.; ADANA SANTIAGO, M. R. Experimental analysis and model validation of an opaque ventilated facade. Building and Environment, v. 56, p. 265-275, Oct. 2012. DOI: http://dx.doi.org/10.1016/j.buildenv.2012.03.017. DOI: https://doi.org/10.1016/j.buildenv.2012.03.017

PECI LÓPEZ, F.; SANTIAGO, M. R. de A. Sensitivity study of an opaque ventilated facade in the winter season in different climate zones in Spain. Renewable Energy, v. 75, p. 524-533, Mar. 2015. DOI: http://dx.doi.org/10.1016/j.renene.2014.10.031. DOI: https://doi.org/10.1016/j.renene.2014.10.031

PERGOLINI, M; ULPIANI, G; SHEHI, O; DI PERNA, C; STAZI, F. Controlled inlet airflow in ventilated facades: a numerical analysis. IOP Conference Series: Materials Science and Engineering, v. 609, p. 032009, Sept. 2019. DOI: http://dx.doi.org/10.1088/1757-899x/609/3/032009. DOI: https://doi.org/10.1088/1757-899X/609/3/032009

PETRICHENKO, M. R.; KOTOV, E. V.; NEMOVA, D. V.; TARASOVA, D. S.; SERGEEV, V. Numerical simulation of ventilated facades under extreme climate conditions. Magazine of Civil Engineering, v. 77, n. 1, p. 130–140, 2018. DOI: http://dx.doi.org/10.18720/MCE.77.12.

PETRITCHENKO, M. R.; SUBBOTINA, S. A.; KHAIRUTDINOVA, F. F.; REICH, E. V.; NEMOVA, D. V.; OLSHEVSKIY, V. Ya.; SERGEEV, V. V. Effect of rustication joints on air mode in ventilated facade. Magazine of Civil Engineering, v.73, n.5, p. 40–48, 2017. DOI: http://dx.doi.org/10.18720/MCE.73.4. DOI: https://doi.org/10.1051/matecconf/20167302007

ROCHA, A. P. Fachada ventilada: industrial e sem desperdícios de resíduos, sistema de fachada com cerâmica extrudada começa a se disseminar em edifícios comerciais. Revista Téchne, v. 176, n. 19, p. 48-52, Nov. 2011.

STAZI, F.; TOMASSONI, F.; VEGLIÒ, A.; DI PERNA, C. Experimental evaluation of ventilated walls with an external clay cladding. Renewable Energy, v. 36, n. 12, p. 3373-3385, Dec. 2011. DOI: http://dx.doi.org/10.1016/j.renene.2011.05.016. DOI: https://doi.org/10.1016/j.renene.2011.05.016

SÁNCHEZ, M. N.; GIANCOLA, E.; BLANCO, E.; SOUTULLO, S.; SUÁREZ, M. Experimental Validation of a Numerical Model of a Ventilated Facade with Horizontal and Vertical Open Joints. Energies, v. 13, n. 1, p. 146, Dec. 2020. DOI: http://dx.doi.org/10.3390/en13010146. DOI: https://doi.org/10.3390/en13010146

SÁNCHEZ, M. N.; GIANCOLA, E.; SUÁREZ, M. J.; BLANCO, E.; HERAS, M. R. Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV. Renewable Energy, v. 109, p. 613-623, Aug. 2017. DOI: http://dx.doi.org/10.1016/j.renene.2017.03.082. DOI: https://doi.org/10.1016/j.renene.2017.03.082

SÁNCHEZ, M. N.; SANJUAN, C.; SUÁREZ, M. J.; HERAS, M. R. Experimental assessment of the performance of open joint ventilated facades with buoyancy-driven airflow. Solar Energy, v. 91, p. 131-144, May 2013. DOI: http://dx.doi.org/10.1016/j.solener.2013.01.019. DOI: https://doi.org/10.1016/j.solener.2013.01.019

SANJUAN, C.; SÁNCHEZ, M. N.; HERAS, M. del R.; BLANCO, E. Experimental analysis of natural convection in open joint ventilated facades with 2D PIV. Building and Environment, v. 46, n. 11, p. 2314-2325, Nov. 2011a. DOI: http://dx.doi.org/10.1016/j.buildenv.2011.05.014. DOI: https://doi.org/10.1016/j.buildenv.2011.05.014

SANJUAN, C.; SUÁREZ, M. J.; BLANCO, E.; HERAS, M. del R. Development and experimental validation of a simulation model for open joint ventilated façades. Energy and Buildings, v. 43, n. 12, p. 3446-3456, Dec. 2011b. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.09.005. DOI: https://doi.org/10.1016/j.enbuild.2011.09.005

SANJUAN, C.; SUÁREZ, M. J.; GONZÁLEZ, M.; PISTONO, J.; BLANCO, E. Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade. Solar Energy, v. 85, n. 9, p. 1851-1863, Sept. 2011c. DOI: http://dx.doi.org/10.1016/j.solener.2011.04.028. DOI: https://doi.org/10.1016/j.solener.2011.04.028

SCHABOWICZ, K.; ZAWISLAK, L. Numerical Comparison of Thermal Behaviour Between Ventilated Facades. Studia Geotechnica et Mechanica, v. 42, n. 4, p. 297–305, Dec. 2020. DOI: http://dx.doi.org/10.2478/sgem-2019-0044. DOI: https://doi.org/10.2478/sgem-2019-0044

SEFERIS, P.; STRACHAN, P.; DIMOUDI, A.; ANDROUTSOPOULOS, A. Investigation of the performance of a ventilated wall. Energy and Buildings, v. 43, n. 9, p. 2167-2178, Sept. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.04.023. DOI: https://doi.org/10.1016/j.enbuild.2011.04.023

SOTO FRANCÉS, V. M.; SARABIA-ESCRIVÁ, E. J. S.; PINAZO-OJER, J. M.; BANNIER, E.; CANTAVELLA SOLER, V.; SILVA MORENO, G. S. Modeling of ventilated facades for energy building simulation software. Energy and Buildings, v. 65, p. 419-428, Oct. 2013. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.06.015. DOI: https://doi.org/10.1016/j.enbuild.2013.06.015

STAZI, F.; ULPIANI, G.; PERGOLINI, M.; DI PERNA, C.; D'ORAZIO, M. The role of wall layers properties on the thermal performance of ventilated facades: experimental investigation on narrow-cavity design. Energy and Buildings, v. 209, p. 109622, Feb. 2020. DOI: http://dx.doi.org/10.1016/j.enbuild.2019.109622. DOI: https://doi.org/10.1016/j.enbuild.2019.109622

STAZI, F.; ULPIANI, G.; PERGOLINI, M.; MAGNI, D.; DI PERNA, C. Experimental Comparison Between Three Types of Opaque Ventilated Facades. The Open Construction and Building Technology Journal, v. 12, p. 296-308, Nov. 2018. DOI: http://dx.doi.org/10.2174/1874836801812010296. DOI: https://doi.org/10.2174/1874836801812010296

STAZI, F.; VEGLIO, A.; DI PERNA, C. Experimental assessment of a zinc-titanium ventilated façade in a Mediterranean climate. Energy and Buildings, v. 69, p. 525–534, Feb. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.11.043. DOI: https://doi.org/10.1016/j.enbuild.2013.11.043

SUÁREZ, C.; JOUBERT, P.; MOLINA, J. L.; SÁNCHEZ, F. J. Heat transfer and mass flow correlations for ventilated facades. Energy and Buildings, v. 43, n. 12, p. 3696-3703, Dec. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.10.002. DOI: https://doi.org/10.1016/j.enbuild.2011.10.002

ZURRO GARCÍA, B.; ARREGI GOIKOLEA, B.; GONZÁLEZ MARTÍN, J. M.; HERNANDEZ GARCÍA, J. L. Comparison of theoretical heat transfer model with results from experimental monitoring installed in a refurbishment with ventilated facade. IOP Conference Series: Earth and Environmental Science, v. 410, n. 1, p. 012104, Jan. 2020. DOI: http://dx.doi.org/10.1088/1755-1315/410/1/012104. DOI: https://doi.org/10.1088/1755-1315/410/1/012104

Downloads

Publicado

2022-09-26

Como Citar

GOULART, M. F.; LABAKI, L. C. Desempenho térmico de fachadas ventiladas opacas: uma revisão sistemática. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, n. 00, p. e022026, 2022. DOI: 10.20396/parc.v13i00.8667308. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8667308. Acesso em: 4 dez. 2022.

Edição

Seção

Artigos de revisão