Banner Portal
Desempenho térmico de fachadas ventiladas opacas
PDF (English)

Palavras-chave

Desempenho térmico
Fachada ventilada opaca
Revisão sistemática de literatura

Como Citar

GOULART, Mariana Fortes; LABAKI, Lucila Chebel. Desempenho térmico de fachadas ventiladas opacas: uma revisão sistemática. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, n. 00, p. e022026, 2022. DOI: 10.20396/parc.v13i00.8667308. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8667308. Acesso em: 20 abr. 2024.

Resumo

As fachadas ventiladas têm sido apontadas como uma solução viável para melhoria do desempenho térmico de edifícios, beneficiando, assim, sua eficiência energética. Dentre os diversos tipos desse sistema, a literatura aponta uma escassez de estudos acerca das fachadas ventiladas opacas. Assim, este trabalho tem como objetivo reunir pesquisas sobre o desempenho térmico de fachadas ventiladas opacas por meio da Revisão Sistemática da Literatura (RSL), considerando o local onde as pesquisas foram feitas, o método utilizado e os principais parâmetros que influenciam no desempenho térmico dessas fachadas. A RSL se mostrou eficiente em traçar o panorama desejado, indicando que este modelo de fachada consiste em uma tecnologia explorada apenas recentemente no meio acadêmico, com pesquisas concentradas no continente europeu, principalmente na Espanha, Itália e Portugal, evidenciando o clima mediterrâneo como foco das pesquisas. A maior parte das pesquisas foi realizada com simulações computacionais, seguidos pelos métodos experimentais, que validaram os modelos matemáticos dos programas de simulação. Com a RSL, identificaram-se as condições externas e os aspectos da geometria que mais influenciam no desempenho térmico dessas fachadas. Dentre as condições do meio externo, a radiação solar e as estações do ano foram os parâmetros mais abordados nas pesquisas. Em relação à geometria da fachada, as aberturas na fachada ventilada (presença ou ausência de juntas e grelhas), a altura da cavidade e o material que compõe a camada externa foram as variáveis mais estudadas.

https://doi.org/10.20396/parc.v13i00.8667308
PDF (English)

Referências

ALONSO, C.; OTEIZA, I.; GARCÍA-NAVARRO, J.; MARTÍN-CONSUEGRA, F. Energy consumption to cool and heat experimental modules for the energy refurbishment of façades. Three case studies in Madrid. Energy and Buildings, v. 126, p. 252-262, Aug. 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.04.034.

APARICIO-FERNÁNDEZ, C.; VIVANCOS, J. L.; FERRER-GISBERT, P.; ROYO-PASTOR, R. Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering, v. 66, n. 1-2, p. 563-570, May 2014. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041.

BALTER, J.; GANEM, C.; BAREA, G. Mejoras en el desempeño energético de edificios en verano mediante la integración de envolventes ventiladas en fachadas norte y cubiertas. El caso de Mendoza, Argentina. Hábitat Sustentable, v. 10, n. 2, p. 94-105, 30 Dec. 2020. DOI: https://doi.org/10.22320/07190700.2020.10.02.07.

BALTER, J.; PARDAL MARCH, C.; PARICIO ANSUATEGUI, I.; GANEM, C. Air cavity performance in Opaque Ventilated Façades in accordance with the Spanish Technical Building Code. Ace: Architecture, City and Environment, v. 13, n. 39, p. 211-232, feb. 2019. DOI: http://dx.doi.org/10.5821/ace.13.39.6487.

BECK, H. E.; ZIMMERMANN, N. E.; McVICAR, T. R.; VERGOPOLAN, N.; BERG, A.; WOOD, E. F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, v. 5, 180214, Oct. 2018. DOI: https://doi.org/10.1038/sdata.2018.214.

DRESCH, A.; LACERDA, D. P.; ANTUNES JR, J. A. V. Design Science Research: A Method for Science and Technology Advancement. Cham: Springer International, 2015. p. 129–158, 2015. DOI: 10.1007/978-3-319-07374-3.

FANTUCCI, S.; MARINOSCI, C.; SERRA, V.; CARBONARO, C. Thermal Performance Assessment of an Opaque Ventilated Façade in the Summer Period: calibration of a simulation model through in-field measurements. Energy Procedia, v. 111, p. 619-628, Mar. 2017. DOI: http://dx.doi.org/10.1016/j.egypro.2017.03.224.

FANTUCCI, S.; SERRA, V.; CARBONARO, C. An experimental sensitivity analysis on the summer thermal performance of an Opaque Ventilated Facade. Energy and Buildings, v. 225, p. 110354, Oct. 2020. DOI: http://dx.doi.org/10.1016/j.enbuild.2020.110354.

GAGLIANO, A.; ANELI, S. Analysis of the energy performance of an Opaque Ventilated Façade under winter and summer weather conditions. Solar Energy, v. 205, p. 531–544, July 2020. DOI: http://dx.doi.org/10.1016/j.solener.2020.05.078

GAGLIANO, A.; NOCERA, F.; ANELI, S. Thermodynamic analysis of ventilated facades under different wind conditions in summer period. Energy and Buildings, v. 122, p. 131–139, June 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.04.035.

GIANCOLA, E.; SANJUAN, C.; BLANCO, E.; HERAS, M. R. Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings, v. 54, p. 363-375, Nov. 2012. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035.

GREGÓRIO-ATEM, C.; APARICIO-FERNÁNDEZ, C.; COCH, H.; VIVANCOS, J. L. Opaque Ventilated Facade (OVF) Thermal Performance Simulation for Office Buildings in Brazil. Sustainability, v. 12, n. 18, p. 7635, Sept. 2020. http://dx.doi.org/10.3390/su12187635.

GUILLÉN, I.; GÓMEZ-LOZANO, V.; FRAN, J. M.; LÓPEZ-JIMÉNEZ, P. A. Thermal behavior analysis of different multilayer facade: numerical model versus experimental prototype. Energy and Buildings, v. 79, p. 184-190, Aug. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.05.006.

HARNANE, Y.; BOUZID, S.; BRIMA, A. Air Flow Thermal and Dynamic Behavior Inside Ventilated Cavities. International Journal of Automotive and Mechanical Engineering, v. 15, n. 3, p. 5652–5666, out. 2018. Disponível em: https://journal.ump.edu.my/ijame/article/view/94/69. Acesso em: 20 jun. 2022.

IBAÑEZ-PUY, M.; VIDAURRE-ARBIZU, M.; SACRISTÁN-FERNÁNDEZ, J. A.; MARTÍN-GÓMEZ, C. Opaque Ventilated Facades: thermal and energy performance review. Renewable and Sustainable Energy Reviews, v. 79, p. 180-191, Nov. 2017. DOI: http://dx.doi.org/10.1016/j.rser.2017.05.059.

IPCC. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2014: Synthesis Report. Geneva: IPCC, 2015. 169 p. Disponível em: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf. Acesso em: 20 feb. 2022.

IRIBARREN, V. E.; CASTELLÓ, G. G.; MAESTRE, C. R. Large format ceramic panels versus recycled aluminum casting panels: Improvement of the thermal behavior of the Museum of fine Arts of Castellón. International Journal of Engineering and Technology, v. 7, n. 4.5, p. 213–216, Feb. 2018. DOI: http://dx.doi.org/10.14419/ijet.v7i4.5.20048.

IRIBAR-SOLABERRIETA, E.; ESCUDERO-REVILLA, C.; ODRIOZOLA-MARITORENA, M.; CAMPOS-CELADOR, A.; GARCÍA-GÁFARO, C. Energy Performance of the Opaque Ventilated Facade. Energy Procedia, v. 78, p. 55-60, Nov. 2015. DOI: http://dx.doi.org/10.1016/j.egypro.2015.11.114.

MACIEL, A. C. F.; CARVALHO, M. T. Operational energy of opaque ventilated façades in Brazil. Journal of Building Engineering, v. 25, p. 100775, Sept. 2019. http://dx.doi.org/10.1016/j.jobe.2019.100775.

MANDAVINEJAD, M.; MOHAMMADI, S. Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate. Ukrainian Journal of Ecology, v. 8, n. 1, p. 273–281, 2018. Disponível em: https://cyberleninka.ru/article/n/ecological-analysis-of-natural-ventilated-facade-system-and-its-performance-in-tehrans-climate/viewer. Acesso em: 20 abr. 2022.

MARINOSCI, C.; SEMPRINI, G.; MORINI, G. L. Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings, v. 72, p. 280–287, Apr. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044.

MARINOSCI, C.; STRACHAN, P. A.; SEMPRINI, G.; MORINI, G. L. Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings, v. 43, n. 4, p. 853-863, Apr. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2010.12.005.

NORE, K.; BLOCKEN, B.; THUE, J.V. On CFD simulation of wind-induced airflow in narrow ventilated facade cavities: coupled and decoupled simulations and modelling limitations. Building and Environment, v. 45, n. 8, p. 1834-1846, Ago. 2010. DOI: http://dx.doi.org/10.1016/j.buildenv.2010.02.014.

PASTORI, S.; MEREU, R.; MAZZUCCHELLI, E. S.; PASSONI, S.; DOTELLI, G. Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards. Energies, v. 14, n. 1, p. 193, Jan. 2021. DOI: http://dx.doi.org/10.3390/en14010193.

PATANIA, F.; GAGLIANO, A.; NOCERA, F.; FERLITO, A.; GALESI, A. Thermofluid-dynamic analysis of ventilated facades. Energy and Buildings, v. 42, n. 7, p. 1148-1155, July 2010. DOI: http://dx.doi.org/10.1016/j.enbuild.2010.02.006.

PECI LÓPEZ, F. P.; JENSEN, R.L.; HEISELBERG, P.; ADANA SANTIAGO, M. R. Experimental analysis and model validation of an opaque ventilated facade. Building and Environment, v. 56, p. 265-275, Oct. 2012. DOI: http://dx.doi.org/10.1016/j.buildenv.2012.03.017.

PECI LÓPEZ, F.; SANTIAGO, M. R. de A. Sensitivity study of an opaque ventilated facade in the winter season in different climate zones in Spain. Renewable Energy, v. 75, p. 524-533, Mar. 2015. DOI: http://dx.doi.org/10.1016/j.renene.2014.10.031.

PERGOLINI, M; ULPIANI, G; SHEHI, O; DI PERNA, C; STAZI, F. Controlled inlet airflow in ventilated facades: a numerical analysis. IOP Conference Series: Materials Science and Engineering, v. 609, p. 032009, Sept. 2019. DOI: http://dx.doi.org/10.1088/1757-899x/609/3/032009.

PETRICHENKO, M. R.; KOTOV, E. V.; NEMOVA, D. V.; TARASOVA, D. S.; SERGEEV, V. Numerical simulation of ventilated facades under extreme climate conditions. Magazine of Civil Engineering, v. 77, n. 1, p. 130–140, 2018. DOI: http://dx.doi.org/10.18720/MCE.77.12.

PETRITCHENKO, M. R.; SUBBOTINA, S. A.; KHAIRUTDINOVA, F. F.; REICH, E. V.; NEMOVA, D. V.; OLSHEVSKIY, V. Ya.; SERGEEV, V. V. Effect of rustication joints on air mode in ventilated facade. Magazine of Civil Engineering, v.73, n.5, p. 40–48, 2017. DOI: http://dx.doi.org/10.18720/MCE.73.4.

ROCHA, A. P. Fachada ventilada: industrial e sem desperdícios de resíduos, sistema de fachada com cerâmica extrudada começa a se disseminar em edifícios comerciais. Revista Téchne, v. 176, n. 19, p. 48-52, Nov. 2011.

STAZI, F.; TOMASSONI, F.; VEGLIÒ, A.; DI PERNA, C. Experimental evaluation of ventilated walls with an external clay cladding. Renewable Energy, v. 36, n. 12, p. 3373-3385, Dec. 2011. DOI: http://dx.doi.org/10.1016/j.renene.2011.05.016.

SÁNCHEZ, M. N.; GIANCOLA, E.; BLANCO, E.; SOUTULLO, S.; SUÁREZ, M. Experimental Validation of a Numerical Model of a Ventilated Facade with Horizontal and Vertical Open Joints. Energies, v. 13, n. 1, p. 146, Dec. 2020. DOI: http://dx.doi.org/10.3390/en13010146.

SÁNCHEZ, M. N.; GIANCOLA, E.; SUÁREZ, M. J.; BLANCO, E.; HERAS, M. R. Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV. Renewable Energy, v. 109, p. 613-623, Aug. 2017. DOI: http://dx.doi.org/10.1016/j.renene.2017.03.082.

SÁNCHEZ, M. N.; SANJUAN, C.; SUÁREZ, M. J.; HERAS, M. R. Experimental assessment of the performance of open joint ventilated facades with buoyancy-driven airflow. Solar Energy, v. 91, p. 131-144, May 2013. DOI: http://dx.doi.org/10.1016/j.solener.2013.01.019.

SANJUAN, C.; SÁNCHEZ, M. N.; HERAS, M. del R.; BLANCO, E. Experimental analysis of natural convection in open joint ventilated facades with 2D PIV. Building and Environment, v. 46, n. 11, p. 2314-2325, Nov. 2011a. DOI: http://dx.doi.org/10.1016/j.buildenv.2011.05.014.

SANJUAN, C.; SUÁREZ, M. J.; BLANCO, E.; HERAS, M. del R. Development and experimental validation of a simulation model for open joint ventilated façades. Energy and Buildings, v. 43, n. 12, p. 3446-3456, Dec. 2011b. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.09.005.

SANJUAN, C.; SUÁREZ, M. J.; GONZÁLEZ, M.; PISTONO, J.; BLANCO, E. Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade. Solar Energy, v. 85, n. 9, p. 1851-1863, Sept. 2011c. DOI: http://dx.doi.org/10.1016/j.solener.2011.04.028.

SCHABOWICZ, K.; ZAWISLAK, L. Numerical Comparison of Thermal Behaviour Between Ventilated Facades. Studia Geotechnica et Mechanica, v. 42, n. 4, p. 297–305, Dec. 2020. DOI: http://dx.doi.org/10.2478/sgem-2019-0044.

SEFERIS, P.; STRACHAN, P.; DIMOUDI, A.; ANDROUTSOPOULOS, A. Investigation of the performance of a ventilated wall. Energy and Buildings, v. 43, n. 9, p. 2167-2178, Sept. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.04.023.

SOTO FRANCÉS, V. M.; SARABIA-ESCRIVÁ, E. J. S.; PINAZO-OJER, J. M.; BANNIER, E.; CANTAVELLA SOLER, V.; SILVA MORENO, G. S. Modeling of ventilated facades for energy building simulation software. Energy and Buildings, v. 65, p. 419-428, Oct. 2013. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.06.015.

STAZI, F.; ULPIANI, G.; PERGOLINI, M.; DI PERNA, C.; D'ORAZIO, M. The role of wall layers properties on the thermal performance of ventilated facades: experimental investigation on narrow-cavity design. Energy and Buildings, v. 209, p. 109622, Feb. 2020. DOI: http://dx.doi.org/10.1016/j.enbuild.2019.109622.

STAZI, F.; ULPIANI, G.; PERGOLINI, M.; MAGNI, D.; DI PERNA, C. Experimental Comparison Between Three Types of Opaque Ventilated Facades. The Open Construction and Building Technology Journal, v. 12, p. 296-308, Nov. 2018. DOI: http://dx.doi.org/10.2174/1874836801812010296.

STAZI, F.; VEGLIO, A.; DI PERNA, C. Experimental assessment of a zinc-titanium ventilated façade in a Mediterranean climate. Energy and Buildings, v. 69, p. 525–534, Feb. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.11.043.

SUÁREZ, C.; JOUBERT, P.; MOLINA, J. L.; SÁNCHEZ, F. J. Heat transfer and mass flow correlations for ventilated facades. Energy and Buildings, v. 43, n. 12, p. 3696-3703, Dec. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.10.002.

ZURRO GARCÍA, B.; ARREGI GOIKOLEA, B.; GONZÁLEZ MARTÍN, J. M.; HERNANDEZ GARCÍA, J. L. Comparison of theoretical heat transfer model with results from experimental monitoring installed in a refurbishment with ventilated facade. IOP Conference Series: Earth and Environmental Science, v. 410, n. 1, p. 012104, Jan. 2020. DOI: http://dx.doi.org/10.1088/1755-1315/410/1/012104.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 PARC Pesquisa em Arquitetura e Construção

Downloads

Não há dados estatísticos.