Banner Portal
Research pavilions as a laboratory for the digital design and fabrication process
Neste volume apresentamos na capa a Residência para professores em Gando, Burkina Faso. Projetada por Francis Kéré. Imagem do Wikimedia Commons
PDF (Português (Brasil))

Keywords

Parametric modeling
Digital fabrication
Research pavilion

How to Cite

SILVA, Felipe Tavares da; CAFFARENA CELANI, Maria Gabriela; DE SOUSA CHECCUCCI, Érica. Research pavilions as a laboratory for the digital design and fabrication process. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 14, n. 00, p. e023008, 2023. DOI: 10.20396/parc.v14i00.8665024. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8665024. Acesso em: 27 sep. 2024.

Abstract

The objective of this paper is to present and discuss the construction of small pavilions as an opportunity for experimentation in the digital design, modeling, digital fabrication (DF) and assembly process of complex architectural forms based on a series of workshops held between the years of 2017 and 2019 in two schools of Architecture in different universities in Brazil. Design Science Research was the primary scientific method adopted in the research, with experimental, exploratory field research being used in different workshops to produce objects and validate the process. The pavilions consisted of funicular shell structures used for shading, and their forms were obtained by a parametric generative algorithm. Participants in the modeling workshops were given a Grasshopper code, which they could alter to design their own versions of the pavilions. Scale models and full-scale prototypes of four different pavilions modeled and manufactured were materialized. With these experiences, different didactic potentialities that the parametric modeling (PM), the DF and the assembly of pavilions can offer were evidenced. Among these the reflection on the design processes of an architectural envelope and its implications for constructability, the experimentation of PM in the design of the form and the possibility of experiencing the entire cycle of design and construction of an architectural object during the undergraduate course. Presenting the lived experiences and discussing their vicissitudes and the difficulties encountered, this work hopes to contribute to the discussion on PM and DF of architectural envelopes in complex shapes.

https://doi.org/10.20396/parc.v14i00.8665024
PDF (Português (Brasil))

References

ADRIAENSSENS, S.; BARNES, M.; HARRIS, R.; WILLIAMS, C. Dynamic Relaxation: Design of strained timber gridshell. In: ADRIAENSSENS, S.; BLOCK, P.; VEENENDAAL, D.; WILLIAMS, C. (org.). Shell structures for architecture: Form Finding and Optimization. New York: Routledge. p. 89-101. 2014

CBIC - CÂMARA BRASILEIRA DA INDÚSTRIA DA CONSTRUÇÃO. Fundamentos BIM: Parte 1 - Implantação do BIM para Construtoras e Incorporadoras. Brasília: CBIC, 2016. 120 p. (Guia BIM. Building Information Modeling, v. 1)

CÔCO JÚNIOR., V. H.; CELANI, G. Algoritmização do projeto arquitetônico em BIM: uma aplicação na indústria de banheiros pré-fabricados. Gestão & Tecnologia de Projetos, São Carlos, v. 16, n. 2, abr./jun. 2021. DOI: https://doi.org/10.11606/gtp.v16i2.181038.

DRESCH, A.; LACERDA, D. P.; ANTUNES JÚNIOR, J. A. V. Design Science Research: Método de pesquisa para avanço da ciência e tecnologia. Porto Alegre: Bookman, 2015. 181 p.

EASTMAN, C.; TEICHOLZ, P.; SACKS, R.; LISTON, K. BIM Handbook: a guide to buiding information modeling for owners, managers, designers, engineers and contractors. 2th ed. New Jersey: John Wiley, 2011. 648 p.

HOLZER, D. Design exploration supported by digital tool ecologies. Automation in Construction, v. 72, pt. 1, p. 3-8, Dec. 2016. DOI: https://doi.org/10.1016/j.autcon.2016.07.003.

KANTERS, J.; HORVAT, M. The design process known as IDP: a discussion. Energy Procedia. v. 30, p. 1153-1162, 2012. DOI: https://doi.org/10.1016/j.egypro.2012.11.128.

KOLAREVIC, B. Towards integrative design. International Journal of Architectural Computing. v. 7, n. 3, p. 335-344, Sept. 2009. DOI: https://doi.org/10.1260/147807709789621248.

KREIDER, R., MESSNER, J.; DUBLER, G. Determining the Frequency and Impact of Applying BIM for Different Purposes on Building Projects. In: INTERNATIONAL CONFERENCE ON INNOVATION IN ARCHITECTURE, ENGINEERING AND CONSTRUCTION (AEC), 6., 2010, Loughborough. Proceedings […]. Loughborough: AEC, 2010. p. 9-11.

MARCONI, M. A.; LAKATOS, E. M. Fundamentos de metodologia científica. 5. ed. São Paulo: Atlas, 2003. 311 p.

MENGES, A.; SCHWINN, T. Manufacturing Reciprocities. Architectural Design. v. 82, n. 2, p. 118-125, Mar. 2012. DOI: https://doi.org/10.1002/ad.1388.

NABONI, R. Form-Finding to fabrication of super-thin anisotropic gridshell. In: CONGRESO DE LA SOCIEDAD IBERO-AMERICANA DE GRÁFICA DIGITAL, 20., 2016, Buenos Aires. Proceedings […]. Buenos Aires: SIGraDi, 2016. p.318-325. DOI: 10.5151/despro-sigradi2016-807.

NIBS. NATIONAL INSTITUTE OF BUILDING SCIENCES. National building information modeling standard. Version 1 – Part 1: Overview, principles and methodologies. Washington, 2007. 183 p. Disponível em: https://buildinginformationmanagement.files.wordpress.com/2011/06/nbimsv1_p1.pdf. Acesso em: 13 out. 2020.

OXMAN, R. Performance-based Design: Current practices and research issues. International Journal of Architectural Computing. v. 6, n. 1, p. 1-17, Jan. 2008. DOI: https://doi.org/10.1260/147807708784640090.

PIGRAM, D; MCGEE, W. Formation Embedded Design: A methodology for the integration of fabrication constraints into architectural design. In: ANNUAL CONFERENCE OF THE ASSOCIATION FOR COMPUTER AIDED DESIGN IN ARCHITECTURE - ACADIA, 31., 2011, Banf. Proceedings […]. Banf: ACADIA, 2011. p. 122-131. DOI: https://doi.org/10.52842/conf.acadia.2011.122.

QUINTELLA, I. P. C. P.; FERREIRA, I. C.; FLORÊNCIO, E. Q. Making Pavilions: os pavilhões temporários no contexto das faculdades de arquitetura e urbanismo. In: CONGRESO DE LA SOCIEDAD IBERO-AMERICANA DE GRÁFICA DIGITAL, 20., 2016. Buenos Aires. Proceedings […]. Buenos Aires: SIGraDi, 2016. p. 318-325. DOI: 10.5151/despro-sigradi2016-483.

RASPALL, F. A Procedural framework for design to fabrication. Automation in Construction. v. 51, p. 132-139, Mar. 2015. DOI: https://doi.org/10.1016/j.autcon.2014.12.003.

SOLLY, J.; FRÜH, N.; SAFFARIAN, S.; ALDINGER, L.; MARGARITTI, G.; KNIPPERS, J. Structural design of a lattice composite cantilever. Structures, v. 18, n. 5, p. 28-40, 2019. DOI: 10.1016/j.istruc.2018.11.019.

SUCCAR, B.; SHER, W.; WILLIAMS, A. An integrated approach to BIM competency assessment, acquisition and application. Automation in Construction. v. 35, Nov. 2013. p. 174-189. DOI: http://dx.doi.org/10.1016/j.autcon.2013.05.016.

TEPAVČEVIĆ, B.; STOJAKOVIĆ, V.; MITOV, D.; BAJŠANSKI, I.; JOVANOVIĆ, M. Design to fabrication method of thin shell structures based on a friction-fit connection system. Automation in Construction. v. 84, p. 207–213, 2017. DOI: https://doi.org/10.1016/j.autcon.2017.09.003.

TOBIN, J. AtomicBIM: Splitting data to unleash BIM´s power. AECbytes. Oct.2008.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.