Análogos de carne

uma revisão narrativa e pesquisa comercial online

Autores

DOI:

https://doi.org/10.20396/san.v28i00.8665640

Palavras-chave:

Subprodutos, Análogos de carne, Sustentabilidade, Dietas à base de plantas, Dietas vegetarianas

Resumo

Visto que o interesse por análogos de carne aumentou devido ao crescimento da população que adere dietas à base de plantas, o objetivo do presente estudo foi realizar uma revisão narrativa sobre análogos de carne empregando subprodutos vegetais e identificar quais produtos pertencentes desta categoria são encontrados comercialmente no Brasil. Para isso, artigos sobre esse tema foram pesquisados em bases de dados científicas e, com a ferramenta Google Shopping, buscou-se análogos de carne disponíveis comercialmente no Brasil. Como resultado, encontrou-se 20 análogos de carne disponíveis comercialmente no mercado brasileiro. Ao analisar a composição nutricional destes produtos observou-se que as proteínas variaram de 1,9 até 50 g/100 g, os carboidratos variaram de 0 até 97 g/100 g, os lipídeos variaram de 1,8 a 15,8 g/100 g, e as calorias variaram de 59 a 615 kcal/100 g. Na lista de ingredientes observou-se insumos como ervilha, proteína de soja, grão-de-bico e feijão preto sendo usados como substitutos de proteínas animais, porém nenhum insumo caracterizado como subproduto. Em contrapartida, na literatura observou-se dois estudos brasileiros que utilizaram subproduto (fibra de caju) para elaboração de análogos de carne. Isso demonstra potencialidade e necessidade de maior investigação científica de subprodutos vegetais utilizados como ingrediente majoritário para aplicação em produtos alimentícios que estão em crescimento conforme o interesse da população, como os análogos de carne.

Downloads

Não há dados estatísticos.

Biografia do Autor

Nicoly Chagas de Araujo, Universidade Federal de Ciências da Saúde de Porto Alegre

Graduanda em Nutrição.

 

 

Graziela Brusch Brinques, Universidade Federal de Ciências da Saúde de Porto Alegre

Departamento de Nutrição.

Poliana Deyse Gurak, Universidade Federal de Ciências da Saúde de Porto Alegre

Departamento de Nutrição.

Referências

Lindgren E, Harris F, Dangour AD, Gasparatos A, Hiramatsu M, Javadi F, et al. Sustainable food systems—a health perspective. Sustain Sci [Internet]. 2018;13(6):1505–17. Available from: https://doi.org/10.1007/s11625-018-0586-x

Yuliarti O, Jun T, Kovis K, Yi NJ. Structuring the meat analogue by using plant-based derived composites. J Food Eng [Internet]. 2021;288(May 2020):110138. Available from: https://doi.org/10.1016/j.jfoodeng.2020.110138

Capone R, Bottalico F, Palmisano GO, El Bilali H, Dernini S. Food systems sustainability, food security and nutrition in the mediterranean region: The contribution of the mediterranean diet. Vol. 2, Encyclopedia of Food Security and Sustainability. Elsevier; 2018. 176–180 p.

Food and Agriculture Organization. Regional Overview of Food Security and Nutrition in Europe and Central Asia 2019 [Internet]. 2019 [cited 2020 Aug 13]. Available from: http://www.fao.org/3/ca7153en/ca7153en.pdf

Food and Agriculture Organization. Sustainable food systems: Concept and framework [Internet]. 2018 [cited 2020 Aug 15]. Available from: http://www.fao.org/3/ca2079en/CA2079EN.pdf

Shirahigue LD, Ceccato-Antonini SR. Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Ciência Rural. 2020;50(4).

Silva MLT, Brinques GB, Gurak PD. Utilização de farinha de subproduto de brotos para elaboração de massa alimentícia fresca. Brazilian J Food Technol. 2019;22(e2018063):1–10.

Atwater WO, Woods CD. The chemical composition of american food materials. 1986.

Horgan G, Scalco A, Craig T, Whybrow S, Macdiarmid J. Social, temporal and situational influences on meat consumption in the UK population. Appetite [Internet]. 2019;138:1–9. Available from: https://doi.org/10.1016/j.appet.2019.03.007

Rose D, Heller MC, Roberto CA. Position of the society for nutrition education and behavior: the importance of including environmental sustainability in dietary guidance. J Nutr Educ Behav [Internet]. 2019;51(1):3–15. Available from: https://doi.org/10.1016/j.jneb.2018.07.006

Organização das Nações Unidas. Seus hábitos alimentares podem influenciar o clima global? [Internet]. 2020 [cited 2020 Jul 3]. Available from: https://nacoesunidas.org/video-seus-habitos-alimentares-podem-influenciar-o-clima-global/

Rabès A, Seconda L, Langevin B, Allès B, Touvier M, Hercberg S, et al. Greenhouse gas emissions, energy demand and land use associated with omnivorous, pesco-vegetarian, vegetarian, and vegan diets accounting for farming practices. Sustain Prod Consum. 2020;22:138–46.

Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa. Emissões por atividade econômica: agropecuária [Internet]. 2018 [cited 2020 Jun 26]. Available from: http://seeg.eco.br/

Kim BF, Santo RE, Scatterday AP, Fry JP, Synk CM, Cebron SR, et al. Country-specific dietary shifts to mitigate climate and water crises. Glob Environ Chang [Internet]. 2020;62:101926. Available from: https://doi.org/10.1016/j.gloenvcha.2019.05.010

Satija A, Hu FB. Plant-based diets and cardiovascular health. Trends Cardiovasc Med. 2019;28(7):437–41.

Cheah I, Shimul AS, Liang J, Phau I. Drivers and barriers toward reducing meat consumption. Appetite [Internet]. 2020;149:104636. Available from: https://doi.org/10.1016/j.appet.2020.104636

Kahleova H, Levin S, Barnard N. Cardio-Metabolic Benefits of Plant-Based Diets. Nutrients. 2017;9:1–13.

Mcmacken M, Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J Geriatr Cardiol. 2017;14:342–54.

Andany MMA, Lucan MG, Fernanzez CF, Freire NC, Filgueira MS, Piñero AMP. Effect of diet composition on insulin sensitivity in humans María. Clin Nutr ESPEN. 2019;33:29–38.

Sociedade Vegetariana Brasileira. Guia alimentar de dietas vegetarianas para adultos [Internet]. 2018 [cited 2020 Aug 27]. p. 65. Available from: http://materiais.svb.org.br/guia-alimentar-dietas-vegetarianas

Aravena J, Zubarew T, Bedregal P, Zuzulich S, Urrejola P. Vegetarian diets in first year university students. Rev Chil Pediatr. 2020;91(5):705–10.

García-Maldonado E, Gallego-Narbón A, Vaquero MP. ¿Son las dietas vegetarianas nutricionalmente adecuadas? Una revisión de la evidencia científica. Nutr Hosp. 2019;36(4):950–61.

Oussalah A, Levy J, Berthezene C, Alpers DH, Guéant JL. Health outcomes associated with vegetarian diets: An umbrella review of systematic reviews and meta-analyses. Clin Nutr [Internet]. 2020; Available from: https://doi.org/10.1016/j.clnu.2020.02.037

Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J Acad Nutr Diet. 2016;116(12):1970–80.

Pimentel D, Tomada I, Rêgo C. Alimentação vegetariana nos primeiros anos de vida: considerações e orientações. Acta Port Nutr. 2018;14:10–7.

Himics M, Giannakis E, Kushta J, Hristov J, Sahoo A, Perez-Dominguez I. Co-benefits of a flexitarian diet for air quality and human health in Europe. Ecol Ecom. 2022;191:107232.

Kim J, Kim H, Giovannucci E L. Plant-based diet quality and the risk of total and disease-specific mortality: A population-based prospective study. Clin Nutri. 2021;40(12):5718-5725.

Martínez A, Ros G, Nieto G. Estudio exploratorio del vegetarianismo en restauración colectiva. Nutr Hosp [Internet]. 2019;36(3):681–90. Available from: http://dx.doi.org/10.20960/nh.2314

Oliveira NA de S, Winkelmann DOV, Tobal TM. Farinhas e subprodutos da laranja sanguínea-de-mombuca: caracterização química e aplicação em sorvete. Brazilian J Food Technol. 2019;22(e2018246):1–8.

Spinelli S, Padalino L, Costa C, Nobile MA Del, Conte A. Food by-products to fortified pasta: A new approach for optimization. J Clean Prod [Internet]. 2019;215:985–91. Available from: https://doi.org/10.1016/j.jclepro.2019.01.117

Cedola A, Cardinali A, Antuono ID, Conte A, Nobile MA Del. Cereal foods fortified with by-products from the olive oil industry. Food Biosci [Internet]. 2020;33:100490. Available from: https://doi.org/10.1016/j.fbio.2019.100490

Santos CM dos, Rocha DA, Madeira RAV, Queiroz E de R, Mendonça MM, Pereira J, et al. Preparation, characterization and sensory analysis of whole bread enriched with papaya byproduct flour. Brazilian J Food Technol. 2018;21(e2017120):1–9.

Fernandez MV, Bengardino M, Jagus RJ, Aguero MV. Enrichment and preservation of a vegetable smoothie with an antioxidant and antimicrobial extract obtained from beet by-products. LWT. 2020;117(108622).

Ismail I, Hwang Y, Joo S. Meat analog as future food: a review. J Anim Sci Technol. 2020;62(2):111–20.

Bohrer BM. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci Hum Wellness [Internet]. 2019;8(4):320–9. Available from: https://doi.org/10.1016/j.fshw.2019.11.006

Kazir M, Livney YD. Plant-Based Seafood Analogs. Molecules. 2021;26(6).

Kyriakopoulou K, Keppler JK, Van der Goot AJ. Functionality of ingredients and additives in plant-based meat analogues. Foods. 2021;10(3).

Rizzo G, Baroni L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients. 2018;10(43):1–51.

Fu Y, Chen T, Chen SHY, Liu B, Sun P, Sun H, et al. The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Vol. 112, Trends in Food Science & Technology. 2021. p. 188–200.

Lima JR, Garruti D dos S, Machado TF, Araujo IM da S. Vegetal burgers of cashew fiber and cowpea : formulation , characterization and stability during frozen storage. Rev Ciência Agronômica. 2018;49(4):708–14.

Lima JR, Garruti DDOSS, Adolfo G, Pinto S, César H, Magalhães R, et al. Vegetal burguers of cashew fiber and texturized soy protein. Rev Bras Frutic. 2017;39(3).

Adhikari B, Dhungana SK, Ali MW, Adhikari A, Kim ID, Shin DH. Resveratrol, total phenolic and flavonoid contents, and antioxidant potential of seeds and sprouts of Korean peanuts. Food Sci Biotechnol [Internet]. 2018;27(5):1275–84. Available from: https://doi.org/10.1007/s10068-018-0364-7

Abellán A, Domínguez-Perles R, Moreno DA, García-Viguera C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients. 2019;11(2):1–22.

Cantelli KC, Schmitd JT, De Oliveira MA, Steffens J, Steffens C, Leite RS, et al. Brotos de linhagens genéticas de soja: avaliação das propriedades físico-químicas. Brazilian J Food Technol. 2017;20(e2016074):1–10.

Domingues R, Munekata P. ES, Pateiro M, Maggiolino A, Bohrer B, Lorenzo J M Red Beetrot. A potential source of natural additives fot the meat industry. Appl Sci. 2020; 10(23)8340.

Núcleo de Estudos e Pesquisa em Alimentação –

NEPA. Tabela brasileira de composição dos alimentos – TACO. 4 ed. Campinas:NEPA-UNICAMP; 2011.

Downloads

Publicado

2021-12-30

Como Citar

ARAUJO, N. C. de .; BRINQUES, G. B.; GURAK, P. D. . Análogos de carne: uma revisão narrativa e pesquisa comercial online. Segurança Alimentar e Nutricional, Campinas, SP, v. 28, n. 00, p. e021037, 2021. DOI: 10.20396/san.v28i00.8665640. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/san/article/view/8665640. Acesso em: 8 dez. 2022.

Edição

Seção

Artigos de Revisão