Banner Portal
Ciclos climáticos e causas naturais das mudanças do clima
Reconstituição artística de uma paisagem do Pleistoceno sul-americano, com o notoungulado Toxodon, herbívoro de tamanho avantajado. (Desenho de Jorge Blanco). Ref. Braunn & Ribeiro 2017, Terræ Didatica, 13(2):131. DOI: https://doi.org/10.20396/td.v13i2.8650100
PDF

Palavras-chave

Mudança climática. Clima. Climatologia. Geologia. Processos naturais
dióxido de carbono. Aquecimento global antropogênico.

Como Citar

OLIVEIRA, Marcos José de; CARNEIRO, Celso Dal Ré; VECCHIA, Francisco Arthur da Silva; BAPTISTA, Gustavo Macedo de Mello. Ciclos climáticos e causas naturais das mudanças do clima. Terrae Didatica, Campinas, SP, v. 13, n. 3, p. 149–184, 2018. DOI: 10.20396/td.v13i3.8650958. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8650958. Acesso em: 23 abr. 2024.

Resumo

A periódica mudança climática na Terra pode ser explicada por um número reduzido de fatores terrestres e astronômicos. Nas escalas anual/diária, o clima obedece aos movimentos de translação e de rotação. Ciclos climáticos de períodos médios (décadas/séculos/milênios) relacionam-se a mudanças na radiação solar, provocadas pela influência de grandes planetas do Sistema Solar. As oscilações oceânicas (ordem decadal) são possivelmente causadas por influências planetárias e lunares. Ciclos climáticos longos (dezenas a centenas de milhares de anos) são causados por variações nos parâmetros da órbita da Terra (excentricidade, obliquidade e precessão). Eventos de impacto de grandes corpos no planeta e extinções em massa de espécies advêm de superciclos (dezenas de milhões de anos) provocados pela oscilação vertical do Sistema Solar em relação ao plano galáctico. Tectonismo, vulcanismo e a evolução de supercontinentes exibem superciclos (centenas de milhões de anos) induzidos pelo deslocamento do Sistema Solar ao redor do centro da Via Láctea e pela variação de raios cósmicos. Fatores astronômicos permeiam praticamente todas as ordens dos ciclos climáticos e atuam direta ou indiretamente nos processos bio-geo-oceânico-atmosféricos. Conclui-se que o clima na Terra é caracterizado por ciclos controlados astronomicamente pela Lua, o Sol, os planetas, o Sistema Solar e, até mesmo, a Galáxia. 

https://doi.org/10.20396/td.v13i3.8650958
PDF

Referências

Abreu J.A., Beer J., Ferriz-Mas A. 2010. Past and future solar activity from cosmogenic radionuclides. In: Cranmer S.R., Hoeksema J.T., Kohl J.L. (eds.). 2010. Astronomical Society of the Pacific Conference Series Vol. 428: SOHO-23: understanding a peculiar solar minimum. Proceedings of a workshop held 21-25 September 2009 in Northeast Harbor, Maine, USA. San Francisco: Astronomical Society of the Pacific. 428:287-295. [ISBN: 978-1-58381-736-0]. URL: http://adsabs.harvard.edu/full/2010ASPC..428..287A. Acesso: 29.11.2015.

Abreu J.A., Beer J., Ferriz-Mas A., McCracken K.G., Steinhilber F. 2012. Is there a planetary influence on solar activity? Astronomy & Astrophysics. 548:A88. December 2012. [DOI: http://dx.doi.org/10.1051/0004-6361/201219997]

Agência Fapesp. 2004. Crateras reveladas. 10 mai. 2004. URL: http://agencia.fapesp.br/1767. Acesso: 29.11.2015.

Agência Fapesp. 2010. Impacto acabou com dinossauros. 5 mar. 2010. URL: http://www.agencia.fapesp.br/materia/11852/impacto-acabou-com-dinossauros.htm. Acesso: 29.11.2015.

Alvarez L.W., Alvarez W., Asaro F., Michel H.V. 1980. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science. 208(4448):1095-1108. [DOI: http://dx.doi.org/10.1126/science.208.4448.1095]

Arbab I.A. 2009. The Length of the Day: A Cosmological Perspective. Progress in Physics. 5(1):8-11. URL: http://www.ptep-online.com/index_files/2009/PP-16-02.PDF. Acesso: 29.11.2015.

Assine M.L., Vesely F.F. 2008. Ambientes glaciais. In: Silva A.J.P., Aragão A.N.F., Magalhães A.J.C. (eds.). 2008. Ambientes de Sedimentação Siliciclástica do Brasil. São Paulo: Ed. Beca. p. 24-51. [ISBN: 8587256513; 343 p.]

Bartlein P.J. 2006. Time Scales of Climate Change. In: Elias S.A. (ed.). 2006. Encyclopedia of Quaternary Science. 1ª ed. Amsterdam: Elsevier. p. 1873-1883. [ISBN: 978-0-444-52747-9; 3576 p.] [DOI: http://dx.doi.org/10.1016/B0-44-452747-8/00010-7]

Beer J., Mender W., Stellmacher R. 2000. The role of the sun in climate forcing. Quaternary Science Reviews. 19(1-5):403-415. [DOI: http://dx.doi.org/10.1016/S0277-3791(99)00072-4]

Benkö F. 1985. Geological and cosmogonic cycles: as reflected by the new law of universal cyclicity. Budapest: Akademiai Kiado. [ISBN: 9630532980; 400 p.]

Berger W.H., Patzold J., Wefe G. 2002. A Case for Climate Cycles: Orbit, Sun and Moon. In: Wefer G. et al. (eds.). 2002. Climate Development and History of the North Atlantic Realm. Berlin: Springer. p. 101-123. [ISBN: 978-3-642-07744-9; 486 p.] [DOI: http://dx.doi.org/10.1007/978-3-662-04965-5_8]

Bertrand C., van Ypersele J.P., Berger A. 1999. Volcanic and solar impacts on climate since 1700. Climate Dynamics. 15(5):355-367. [DOI: http://dx.doi.org/10.1007/s003820050287]

Bindoff N.L. et al. 2007. Observations: Oceanic Climate Change and Sea Level. In: Solomon S. et al. (eds.). 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge Univ. Press. 996p. URL: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter5.pdf. Acesso: 29.11.2015.

Blizard J.B. 1987. Long-Range Prediction of Solar Activity. In: Rampino M.R., Sanders J.E. 1987. Newman W.S., Konigsson L.K. (eds.). 1987. Climate History, Periodicity, and Predictability. New York: van Nostrand Reinhold. p. 415-420. [ISBN: 0-442-27866-7; 544 p.]

Bond D.P.G., Grasby S.E. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology. 478:3-29. [DOI: https://doi.org/10.1016/j.palaeo.2016.11.005]

Borovička J. et al. 2013. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature. 503(7475):235-237. [DOI: http://dx.doi.org/10.1038/nature12671]

Borovička J., Spurný P., Brown P., Wiegert P., Kalenda P., Clark D., Lukáš S. 2013. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature. 503(7475):235-

[DOI: http://dx.doi.org/10.1038/nature12671]

Brown P.G., Assink J. D., Astiz L., Blaauw R., Boslough M.B., Borovicka J., Brachet N., Brown D., Campbell-Brown M., Ceranna L., Cooke W., de Groot-Hedlin C., Drob D.P., Edwards W., Evers L.G., Garces M., Gill J., Hedlin M., Kingery A., Laske G., Le Pichon A., Mialle P., Moser D.E., Saffer, A., Silber E., Smets P., Spalding R.E., Spurny P., Tagliaferri E., Uren D., Weryk R.J., Whitaker R., Krzeminski Z. 2013. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature. 503(7475):238-241. [DOI: http://dx.doi.org/10.1038/nature12741]

Bryden H.L., Longworth H.R., Cunningham S.A. 2005. Slowing of the Atlantic meridional overturning circulation at 25ºN. Nature. 438(7068):655-657. [DOI: http://dx.doi.org/10.1038/nature04385]

Cerveny R.S., Shaffer J.A. 2001. The Moon and El Niño. Geophysical Research Letters. 28(1):25-28. [DOI: http://dx.doi.org/10.1029/2000GL012117]

Charvátová I. 2000. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion? Annales Geophysicae. 18(4):399-405. [DOI: http://dx.doi.org/10.1007/s00585-000-0399-x]

Christianto V., Pitkaneny M., Smarandache F. 2009. A Few Remarks on “The Length of Day: A Cosmological Perspective”. Progress in Physics. 5(1):8-11. URL: http://www.ptep-online.com/index_files/2009/PP-16-L2.PDF. Acesso: 29.11.2015.

Chumakov N.M. 2002. One-way and quasi-periodic climate changes: Geologic evidence. Russian Journal of Earth Sciences. 4(4):277–299. URL: http://elpub.wdcb.ru/journals/rjes/v04/tje02088/tje02088.pdf?. Acesso: 29.11.2015.

Chumakov N.M. 2005. Factors of Global Climatic Changes Inferred from Geological Data. Stratigraphy and Geological Correlation. 13(3):221–241.

Coghlan A. 2012. Earth’ s oldest impact crater found in Greenland. Newscientist. 29 jun. 2012. URL: http://www.newscientist.com/article/dn21996-earths-oldest-impact-crater-found-in-greenland.html. Acesso: 29.11.2015.

Compo G.P., Sardeshmukh P.D. 2009. Oceanic influences on recent continental warming. Climate Dynamics. 32(2-3):333-342. [DOI: http://dx.doi.org/10.1007/s00382-008-

-9]

Condie C.K. 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters. 163(1-4):97-108. [DOI: http://dx.doi.org/10.1016/S0012-821X(98)00178-2]

Condie K.C. 2011. The Supercontinent Cycle. In: Condie K.C. 2011. Earth as an Evolving Planetary System. 2ª ed. Oxford: Academic Press. p. 317-355. [ISBN: 978-0-12-385227-4; 578 p.]

Courtillot V., Gallet Y., Mouël J.L., Fluteau F., Genevey A. 2007. Are there connections between the Earth’s magnetic field and climate? Earth and Planetary Science Letters. 253(3-4):328-339. [DOI: http://dx.doi.org/10.1016/j.epsl.2006.10.032]

Critchfield H.J. 1966. General climatology. 2ª ed. Englewood Cliffs, N.J.: Prentice-Hall. [420 p.]

Crósta A.P. 1982. Estruturas de impacto no Brasil: uma síntese do conhecimento atual. In: Congr. Bras. Geol., 32, Salvador. Anais... Salvador: SBG. v. 4, p. 1372-1377.

Crósta A.P. 1986. Impact structures in Brazil. In: Pohl J. (ed.). 1986. Research in terrestrial impact structures. Braunschweig, Wiesbaden, Fried. Vieweg & Sons. p. 30-38.

Crósta A.P. 2002. Domo de Araguainha (GO-MT): O maior astroblema da América do Sul. In: Schobbenhaus C., Campos D.A., Queiroz E.T., Winge M., Berbert-Born M. (eds.). 2002. Sítios Geológicos e Paleontológicos do Brasil. Vol. 1. Brasília: DNPM/CPRM/SIGEP. p. 531-540.

Crósta A.P. 2012. Estruturas de impacto e astroblemas brasileiros. In: Hasui Y., Carneiro C.D.R., Almeida F.F.M., Bartorelli A. (eds). 2012. Geologia do Brasil. São Paulo: Ed. Beca. p. 673-708. (Cap. 28). [ISBN 978-85-62768-10-1].

Davis B.A.S., Brewer S. 2011. A unified approach to orbital, solar, and lunar forcing based on the Earth’s latitudinal insolation/temperature gradient. Quaternary Science Reviews. 30(15–16):1861-1874. [DOI: http://dx.doi.org/10.1016/j.quascirev.2011.04.016]

Davis M., Hut P., Muller R.A. 1984. Extinction of species by periodic comet showers. Nature. 308(5961):715-717. [DOI: http://dx.doi.org/10.1038/308715a0]

Dickey J.O., Marcus S.L., de Viron O. 2011: Air Temperature and Anthropogenic Forcing: Insights from the Solid Earth. Journal of Climate. 24(2):569-574. [DOI: http://dx.doi.org/10.1175/2010JCLI3500.1]

DjSadhu. The helical model - our solar system is a vortex. Youtube, 24 ago. 2012. URL: https://youtu.be/0jHsq36_NTU. Acesso: 25.05.2017.

DjSadhu. The helical model - our Galaxy is a vortex. Youtube, 25 jan. 2013. URL: https://youtu.be/C4V-ooITrws. Acesso: 25.05.2017.

Dvorsky G. 2016. A inclinação estranha do nosso Sol pode significar que o Planeta 9 realmente existe. Gizmodo Brasil. 21 out. 2016. URL: http://gizmodo.uol.com.br/inclinacao-sol-planeta-9/. Acesso: 01.05.2017.

Engel A.E.G., Engel C.B. 1964. Continental accretion and the evolution of North America. In: Subramaniam A.P., Balakrishna S. (eds.). 1964. Advancing frontiers in geology and geophysics: Indian Geophysical Union. Hyderabad. p. 17-37. [511 p.]

Erlykin A.D., Harper D.A.T., Sloan T., Wolfendale A.W. 2017. Mass extinctions over the last 500 myr: an astronomical cause? Palaeontology. 60(2):159-167. [DOI: http://dx.doi.org/10.1111/pala.12283]

Erwin D.H. 1993. The Great Paleozoic Crisis: Life and Death in the Permian. New York: Columbia University Press. [ISBN: 0231074662; 327 p.]

Faustinoni J.M., Carneiro C.D.R. 2015. Movimentos da crosta e relações entre Tectônica e dinâmica atmosférica. Terræ Didatica, 11(3):173-181. https://www.ige.unicamp.br/terraedidatica/v11_3/00.html.

Fiedler B. 2009. [Professor of Meteorology, National Weather Center, University of Oklahoma] Milankovitch Cycles, Orbit, and Cores. [Mensagem pessoal recebida em 12 dez. 2009]. URL (imagem com citação das fontes originais dos dados): http://en.wikipedia.org/wiki/File:MilankovitchCyclesOrbitandCores.png. Acesso: 29.11.2015.

Fischer A.G. 1981. Climatic oscillations in the biosphere. In: Nitecki M.H. (ed.). 1981. Biotic crises in ecological and evolutionary time. New York: Academic Press. p. 103-131. [ISBN: 0125196407; 314 p.]

Fischer A.G. 1982. Long-Term Climatic Oscillations Recorded in Stratigraphy. In: National Research Council. 1982. Climate in Earth History: Studies in Geophysics. Washington, DC: The National Academies Press. p. 97-105. [ISBN: 0309107849; 212 p.]

Florides G.A., Christodoulides P. 2009. Global warming and carbon dioxide through sciences. Environment International. 35(2):390-401. [DOI: http://dx.doi.org/10.1016/j.envint.2008.07.007]

Frakes L.A., Francis J.E., Syktus J.I. 1992. Climate Modes of the Phanerozoic. Cambridge: Cambridge Univ. Press. [ISBN: 9780521021944; 274 p.]

French B.M. 1998. Traces of Catastrophe: A Handbook of Shock- Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954. Houston: Lunar and Planetary Institute. [120 p.]

Garde A.A., McDonald I., Dyck B., Keulen N. 2012. Searching for giant, ancient impact structures on Earth: The Mesoarchaean Maniitsoq structure, West Greenland. Earth and Planetary Science Letters. 337-338:197-210. [DOI: http://dx.doi.org/10.1016/j.epsl.2012.04.026]

Gibney E. 2014. Did dark matter kill the dinosaurs? Nature News. 07 mar. 2014. URL: http://www.nature.com/news/did-dark-matter-kill-the-dinosaurs-1.14839. Acesso: 30.04.2017.

Gies D.R., Helsel J.W. 2005. Ice Age Epochs and the Sun’s Path through the Galaxy. The Astrophysical Journal. 626(2):844-848. [DOI: http://dx.doi.org/10.1086/430250]

Gillman M., Erenler H. 2008. The galactic cycle of extinction. International Journal of Astrobiology. 7(1):17-26. [DOI: http://dx.doi.org/10.1017/S1473550408004047]

Giorgio. 2013a. Southern Oscillation Index. URL: http://en.wikipedia.org/wiki/File:Soi.svg. Acesso: 29.11.2015. [Dados originais – URL: http://www.bom.gov.au/climate/current/soihtm1.shtml].

Giorgio. 2013b. Pacific Decadal Oscillation Index. URL: http://en.wikipedia.org/wiki/File:PDO.svg. Acesso: 29.11.2015. [Dados originais – URL: http://jisao.washington.edu/pdo/PDO.latest].

Giorgio. 2013c. Atlantic Multidecadal Oscillation. URL: http://en.wikipedia.org/wiki/File:Atlantic_Multidecadal_Oscillation.svg. Acesso: 29.11.2015. [Dados originais – URL: http://climexp.knmi.nl/data/iamo_ersst.dat].

Gomes R.S., Soares J.S. 2012. Signatures of a Putative Planetary Mass Solar Companion on the Orbital Distribution of TNO’s and Centaurs. American Astronomical Society, DDA

meeting #43, #5.01.

Halliday A.N. 2000. Terrestrial accretion rates and the origin of the Moon. Earth and Planetary Science Letters. 176(1):17-30. [DOI: http://dx.doi.org/10.1016/S0012-821X(99)00317-9]

Hand E. 2016. Astronomers say a Neptune-sized planet lurks beyond Pluto. Science. 20 jan. 2016. URL: http://www.sciencemag.org/news/2016/01/feature-astronomers-say-neptune-sized-planet-lurks-unseen-solar-system. Acesso: 09.02.2016.

Harper C.K. 2007. Weather and Climate: Decade by Decade. New York: Facts On File, Inc. [ISBN: 0816055351; 272 p.]

Hasui Y. 2012. Evolução dos Continentes. In: Hasui Y., Carneiro C.D.R., Almeida F.F.M.de, Bartorelli A. (eds). 2012. Geologia do Brasil. São Paulo: Ed. Beca. p. 98-111 (Cap. 1). [ISBN: 9788562768101; 900 p.]

Hecht L. 1993-1994. The Coming (or Present) Ice Age. A long-term perspective on the current global warming fad. 21st Century, Winter: 23-35. URL: http://21sci-tech.com/Articles%202005/ComingPresentIceAge.pdf. Acesso 3.02.2016.

Holbourn A., Kuhnt W., Schulz M., Flores J.A., Andersen N. 2007. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth and Planetary Science Letters. 261(3-4):534-550. [DOI: http://dx.doi.org/10.1016/j.epsl.2007.07.026]

Jansa L.F., Aubry M.P., Gradstein F.M. 1990. Comets and extinctions: Cause and effect? Geological Society of America Special Papers. Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. 247:223-232. [DOI: http://dx.doi.org/10.1130/SPE247-p223]

Jose P.D. 1965. Sun’s motion and sunspots. Astronomical Journal. 70(3):193-200. [DOI: http://dx.doi.org/10.1086/109714]

Keeling C.D., Whorf T.P. 1997. Possible forcing of global temperature by the oceanic tides. Proceedings of the National Academy of Sciences of the United States of America. 94(16):8321-8328. URL: http://www.pnas.org/content/94/16/8321.abstract. Acesso: 29.11.2015.

Keeling C.D., Whorf T.P. 2000. The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change. Proceedings of the National Academy of Sciences of the United States of America. 97(8):3814–3819. URL: http://www.pnas.org/content/97/8/3814.abstract. Acesso: 29.11.2015.

Kern A.K., Harzhauser M., Piller W.E., Mandic O., Soliman A. 2012. Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology. 329-330:124-136. [DOI: http://dx.doi.org/10.1016/j.palaeo.2012.02.023]

Kerton A.K. 2009. Climate Change and the Earth’s Magnetic Poles, a Possible Connection. Energy & Environment. 20(1):75-83. [DOI: http://dx.doi.org/10.1260/095830509787689286]

Kirkby J. 2007. Cosmic Rays and Climate. Surveys in Geophysics. 28(5-6):333-375. [DOI: http://dx.doi.org/10.1007/s10712-008-9030-6]

Kopp G., Lean J. L. 2011. A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters. 38(1):L01706. [DOI: http://dx.doi.org/10.1029/2010GL045777]

Kostyk R.I. 2013. What are solar faculae? Kinematics and Physics of Celestial Bodies. 29(1):32-36. [DOI: http://dx.doi.org/10.3103/S0884591313010030]

Kutterolf S., Jegen M., Mitrovica J.X., Kwasnitschka T., Freundt A., Huybers P.J. 2013. A detection of Milankovitch frequencies in global volcanic activity. Geology. 41(2):227-230.

[DOI: http://dx.doi.org/10.1130/G33419.1]

Kvasnytsya V. et al. 2013. New evidence of meteoritic origin of the Tunguska cosmic body. Planetary and Space Science. 84:131-140. [DOI: http://dx.doi.org/10.1016/j.pss.2013.05.003]

Landscheidt T. 1981. Swinging sun, 79‐year cycle, and climatic change. Journal of Interdisciplinary Cycle Research. 12(1):3-19. [DOI: http://dx.doi.org/10.1080/09291018109359720]

Laurian A., Drijfhout S.S., Hazeleger W., van den Hurk B. 2010. Response of the Western European climate to a collapse of the thermohaline circulation. Climate Dynamics. 34(5):689-697. [DOI: http://dx.doi.org/10.1007/s00382-008-0513-4]

Lovett R.A. 2012. New Planet Found in Our Solar System?. National Geographic Daily News. 11 mai. 2012. URL: http://news.nationalgeographic.com/news/2012/05/120511-new-planet-solar-system-kuiper-belt-space-science/. Acesso: 29.11.2015.

Ma W., Tian J., Li Q., Wang P. 2011. Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: Weathering and nutrient response to orbital change. Geophysical Research Letters. 38(10):L10701. [DOI: http://dx.doi.org/10.1029/2011GL047680]

Machado F. 1967. Geological Evidence for a Pulsating Gravitation. Nature. 214(5095):1317-1318. [DOI: http://dx.doi.org/10.1038/2141317a0]

Mackey R. 2009. The Sun’s Role in Regulating the Earth’s Climate Dynamics. Energy & Environment. 20(1):25-73. [DOI: http://dx.doi.org/10.1260/095830509787689196]

Mantua N.J. et al. 1997. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society. 78(6):1069-1079. [DOI: http://dx.doi.org/10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2]

Mason B.G., Pyle D.M., Oppenheimer C. 2004. The size and frequency of the largest explosive eruptions on Earth. Bulletin of Volcanology. 66(8):735-748. [DOI: http://dx.doi.org/10.1007/s00445-004-0355-9]

Masuda K., Nagaya K., Miyahara H., Muraki Y., Nakamura T. 2009. Cosmogenic Radiocarbon and the Solar Activity. J. Phys. Soc. Japan, 78(Supl. A):1-6. [DOI: http://dx.doi.org/10.1143/JPSJS.78SA.1]

Matese J.J., Whitman P.G., Innanen K.A., Valtonen M.J. 1994. Modulating Terrestrial Impacts from Oort Cloud Comets by the Adiabatically Changing Galactic Tides. In: Papers Presented to New Developments Regarding the KT Event and Other Catastrophies in Earth History. LPI Contribution No. 825. Houston: Lunar and Planetary Institute. [138 p.]

Matese J.J., Whitmire D.P. 2011. Persistent evidence of a jovian mass solar companion in the Oort cloud. Icarus. 211(2):926-938. [DOI: http://dx.doi.org/10.1016/j.icarus.2010.11.009]

Mazzarella A., Scafetta N. 2011. Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theoretical and Applied Climatology.

(3):599-609. [DOI: http://dx.doi.org/10.1007/s00704-011-0499-4]

Mcgregor G.R., Nieuwolt S. 1998. Tropical climatology: an introduction to the climates of the low latitudes. 2ª ed. New York: Wiley.[ISBN: 978-0-471-96611-1; 339 p.]

Mcguffie K., Henderson-Sellers A. 2005. A climate modelling primer. 3ª ed. Chichester, West Sussex: John Wiley & Sons. [ISBN: 047085751X; 280 p.]

McKinnell S.M., Crawford R.W. 2007. The 18.6-year lunar nodal cycle and surface temperature variability in the northeast Pacific. Journal of Geophysical Research. 112(c2):C02002. [DOI: http://dx.doi.org/10.1029/2006JC003671]

Mclean J.D., Freitas C.R., Carter R.M. 2009. Influence of the Southern Oscillation on tropospheric temperature. Journal of Geophysical Research. 114(D14):1-8. [DOI: http://dx.doi.org/10.1029/2008JD011637]

Melott A.L., Bambach, R.K. 2010. Nemesis reconsidered. Monthly Notices of the Royal Astronomical Society: Letters. 407(1):L99-L102. [DOI: http://dx.doi.org/10.1111/j.1745-3933.2010.00913.x]

Mewaldt R.A. 1996. Cosmic Rays. In: Rigden J.S. 1996. Mac-Millan Encyclopedia of Physics. New York: Simon & Schuster Macmillan. URL: http://www.srl.caltech.edu/personnel/dick/cos_encyc.html. Acesso: 29.11.2015. [ISBN: 0028645863; 1881 p.]

Miall A.D. 2010. The Geology of Stratigraphic Sequences. 2ª ed. New York: Springer. [ISBN: 9783642050268; 522 p.]

Molion L.C.B. 2006. Aquecimento Global, El Niños, Manchas Solares, Vulcões e Oscilação Decadal do Pacífico. Revista Climanálise. 3(1):1-5. URL: http://climanalise.cptec.inpe.br/~rclimanl/revista/pdf/Artigo_Aquecimento_0805.pdf. Acesso: 29.11.2015.

Molion L.C.B. 2015. [Professor de Meteorologia da Universidade Federal de Alagoas]. Minha visão sobre eventos El Niño. [Mensagem pessoal recebida em 01 ago. 2015]

Molion L.C.B. 2017. Gênese do El Niño. Revista Brasileira de Climatologia. 21:1-4. [Notas de Pesquisa].

Nance R.D., Murphy J.B. 2013. Origins of the supercontinent cycle. Geoscience Frontiers. 4(4):439-448. [DOI: http://dx.doi.org/10.1016/j.gsf.2012.12.007]

Nance R.D., Murphy J.B., Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Research.25(1):4-29. [DOI: http://dx.doi.org/10.1016/j.gr.2012.12.026]

NASA. 2002. The Great Dying. URL: http://science1.nasa.gov/science-news/science-at-nasa/2002/28jan_extinction/. Acesso: 29.11.2015.

NASA. 2003. The Solar ‘Constant’ - Faculae vs. Sunspots. NASA Scientific Visualization Studio. 02 jan. 2003. URL: https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=2644.

Acesso: 29.11.2015.

NASA. 2009. Fresh Craters on the Moon and Earth. NASA Earth Observatory. 13 ago. 2009. URL: http://earthobservatory.nasa.gov/IOTD/view.php?id=39769. Acesso: 29.11.2015.

NASA. 2010. NASA Study Finds Atlantic ‘Conveyor Belt’ Not Slowing. NASA News & Features. 25 mar. 2010. URL: http://www.jpl.nasa.gov/news/news.php?release=2010-101. Acesso: 29.11.2015.

NASA. 2011. NASA Study Goes to Earth’s Core for Climate Insights. NASA Jet Propulsion Laboratory. 09 mar. 2011. URL: http://www.jpl.nasa.gov/news/news.php?release=2011-074. Acesso: 29.11.2015.

Newman M., Compo G.P., Alexander M.A. 2003. ENSO-Forced Variability of the Pacific Decadal Oscillation. Journal of Climate. 16(23):3853-3857. [DOI: http://dx.doi.org/10.1175/1520-0442(2003)016%3C3853:EVOTPD%3E2.0.CO;2]

Oliveira M.J.de, Baptista G.M.M., Vecchia F.V., Carneiro C.D.R. 2015. História geológica e Ciência do Clima: métodos e origens do estudo dos ciclos climáticos na Terra. Terræ. 12(1-2):03-26. URL: http://www.ige.unicamp.br/terrae/V12/T_V12_1.html. Acesso 28.04.2016.

Oskar L. 2009. History of solar telescopes. Experimental Astronomy. 25(1-3):193-207. [DOI: http://dx.doi.org/10.1007/s10686-009-9173-6]

Pälike H. et al. 2006. The Heartbeat of the Oligocene Climate System. Science. 314(5807):1894-1898. [DOI: http://dx.doi.org/10.1126/science.1133822]

Paulescu M., Paulescu E., Gravila P., Badescu V. 2013. Weather Modeling and Forecasting of PV Systems Operation. London: Springer-Verlag. [ISBN: 978-1-4471-4648-3; 358p.]

Petit J.R. et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 399(6735):429-436. [DOI: http://dx.doi.org/10.1038/20859]

Pierazzo E., Artemieva N. 2012. Local and Global Environmental Effects of Impacts on Earth. Elements. 8(1):55-60. [DOI: http://dx.doi.org/10.2113/gselements.8.1.55]

Pivetta M. 2013. A estufa de Araguainha. Revista Fapesp. 211:16-21. URL: http://revistapesquisa.fapesp.br/2013/09/12/a-estufa-de-araguainha/. Acesso: 29.11.2015.

Price G.D., Twitchett R.J., Wheeley J.R., Buono G. 2013. Isotopic evidence for long term warmth in the Mesozoic. Nature. 3:1438. [DOI: http://dx.doi.org/10.1038/srep01438]

Prothero D. 2006. After the Dinosaurs: The Age of Mammals (Life of the Past). Bloomington: Indiana University Press. [ISBN: 0253347335; 384 p.]

Rampino M.R. 1998. The Galactic Theory of Mass Extinctions: an Update. Celestial Mechanics and Dynamical Astronomy. 69(1-2):49-58. [DOI: http://dx.doi.org/10.1023/A:1008365913573]

Rampino M.R., Caldeira K. 2015. Periodic impact cratering and extinction events over the last 260 million years. Monthly Notices of the Royal Astronomical Society. 454(4):3480–3484. [DOI: https://doi.org/10.1093/mnras/stv2088]

Rampino M.R., Haggerty B.M. 1996. The “Shiva Hypothesis”: Impacts, Mass Extinctions, and the Galaxy. Earth, Moon and Planets. 72(1-3):441-460. [DOI: http://dx.doi.org/10.1007/BF00117548]

Rampino M.R., Haggerty B.M., Pagano T.C. 1997. A unified theory of impact crises and mass extinctions: quantitative tests. Earth and Environmental Science Program, New York University, 10003, USA. Annals of the New York Academy of Sciences. 822:403-431. [DOI: http://dx.doi.org/10.1111/j.1749-6632.1997.tb48358.x]

Rampino M.R., Self S. 1993. Climate-Volcanism Feedback and the Toba Eruption of ~74,000 Years Ago. Quaternary Research. 40(3):269-280. [DOI: http://dx.doi.org/10.1006/qres.1993.1081]

Randall L., Reece M. 2014. Dark Matter as a Trigger for Periodic Comet Impacts. Physical Review Letters. 112(16):161301. [DOI: https://doi.org/10.1103/PhysRevLett.112.161301]

Raup D.M., Sepkoski Jr. J.J. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences of the United States of America. 81(3):801-805. URL: http://www.pnas.org/content/81/3/801.short.

Reboita M.S., Pimenta A.P., Natividade U.A. 2015. Influência da inclinação do eixo de rotação da Terra na temperatura do ar global. Terræ Didatica, 11(2):67-77. URL: http://www.ige.unicamp.br/terraedidatica/v11_2/00.html. Acesso: 29.11.2015.

Reimer P.J. et al. 2004. IntCal04 Terrestrial Radiocarbon Age Calibration, 0-26 cal kyr BP. Radiocarbon. 46(3):1029-1058. URL: https://journals.uair.arizona.edu/index.php/radiocarbon/

article/view/4167. Acesso: 29.11.2015. [Dados disponíveis na URL: http://www.radiocarbon.org/IntCal04.htm]

Reimold W.U., Jourdan F. 2012. Impact! - Bolides, Craters, and Catastrophes. Elements. 8(1):19-24. [DOI: http://dx.doi.org/10.2113/gselements.8.1.19]

Ribeiro G.F. 2016. Brasileiro “previu” existência de 9º planeta; busca existe desde o séc. 19. UOL Notícias. 22 fev. 2016. URL: http://noticias.uol.com.br/ciencia/ultimas-noticias/redacao/2016/01/22/brasileiro-previu-ja-em-2012-que-nono-planeta-poderia-existir.htm. Acesso: 09.02.2016.

Robock A., Oman L., Stenchikov G.L., Toon O.B., Bardeen C., Turco R.P. 2007. Climatic consequences of regional nuclear conflicts. Atmospheric Chemistry and Physics. 7(8):2003-

[DOI: http://dx.doi.org/10.5194/acp-7-2003-2007]

Rodríguez-Tovar F.J. 2014. Orbital Climate Cycles in the Fossil Record: From Semidiurnal to Million-Year Biotic Responses. Annual Review of Earth and Planetary Sciences. 42:69-102. [DOI: http://dx.doi.org/10.1146/annurev-earth-120412-145922]

Rogers J.J.W., Santosh M. 2004. Continents and Supercontinents. Oxford: Oxford University Press, 2004. [ISBN: 0195165896; 304 p.]

Ryan P.D., Dewey J.F. 1997. Continental eclogites and the Wilson Cycle. Journal of the Geological Society. 154(3):437-442. [DOI: http://dx.doi.org/10.1144/gsjgs.154.3.0437]

Sample I. 2013. Scientists reveal the full power of the Chelyabinsk meteor explosion. The Guardian. 07 nov. 2013. URL: http://www.theguardian.com/science/2013/nov/06/chelyabinsk-

-meteor-russia. Acesso: 29.11.2015.

Scafetta N. 2010. Empirical evidence for a celestial origin of the climate oscillations and its implications. Journal of Atmospheric and Solar-Terrestrial Physics. 72(13):951-970. [DOI:

http://dx.doi.org/10.1016/j.jastp.2010.04.015]

Scafetta N. 2012. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter–Saturn tidal frequencies plus the 11-year solar dynamo cycle. Journal of Atmospheric and Solar-Terrestrial

Physics. 80:296-311 [DOI: http://dx.doi.org/10.1016/j.jastp. 2012.02.016]

Scafetta N. 2014. The complex planetary synchronization structure of the solar system. Pattern Recognition in Physics. 2(1):1-19. [DOI: http://dx.doi.org/10.5194/prp-2-1-2014]

Scafetta N. 2016. Problems in Modeling and Forecasting Climate Change: CMIP5 General Circulation Models versus a Semi-Empirical Model Based on Natural Oscillations. International Journal of Heat and Technology. 34(Special Issue 2):S435-S442. [DOI: http://dx.doi.org/10.18280/ijht.34Sp0235]

Scafetta N., Milani F., Bianchini A., Ortolani S. 2016. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth Science Reviews. 162:24-43. [DOI: https://doi.org/10.1016/j.earscirev.2016.09.004]

Schiermeier Q. 2005. Atlantic currents show signs of weakening. Nature News. 30 nov. 2005. URL: http://www.nature.com/news/2005/051128/full/news051128-9.html. Acesso: 29.11.2015.

Schiermeier Q. 2006. A Sea Change. Nature. 439(7074):256-260. [DOI: http://dx.doi.org/10.1038/439256a]

Schlager W. 2005. Secular oscillations in the stratigraphic record - an acute debate. Facies. 51(1-4):12-16. [DOI: http://dx.doi.org/10.1007/s10347-005-0066-5]

Schneider D.A., Kent D.V., Mello G.A. 1992. A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change. Earth and Planetary Science Letters. 111(2-4):395-405. [DOI: http://dx.doi.org/10.1016/0012-821X(92)90192-X]

Schöll M., Steinhilber F., Beer J., Haberreiter M., Schmutz M. 2007. Long-term reconstruction of the total solar irradiance based on neutron monitor and sunspot data. Advances in Space Research. 40(7):996-999. [DOI: http://dx.doi.org/10.1016/j.asr.2007.02.092]

Schulte P. et al. 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science. 327(5970):1214-1218. [DOI: http://dx.doi.org/10.1126/science.1177265]

Shaviv N.J., Veizer J. 2003. Celestial driver of Phanerozoic climate? GSA Today. 13(7):4-10. URL: http://www.geosociety.org/gsatoday/archive/13/7/pdf/i1052-5173-13-7-4.pdf. Acesso: 29.11.2015.

Shaviv N.J., Prokoph A., Veizer J. 2014. Is the Solar System’s Galactic Motion Imprinted in the Phanerozoic Climate? Scientific Reports. 4:6150. [DOI: http://dx.doi.org/10.1038/

srep06150]

Siqueira A.H.B., Molion L.C.B. 2015. Análises Climáticas: o filtro Hodrick-Prescott aplicado aos índices atmosféricos da Oscilação Sul e da Oscilação do Atlântico Norte. Revista Brasileira de Meteorologia. 30(3):307-318. [DOI: http://dx.doi.org/10.1590/0102-778620130579]

Solanki S.K., Usoskin I.G., Kromer B., Schüssler M., Beer J. 2004. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature. 431(7012):1084-1087. [DOI: http://dx.doi.org/10.1038/nature02995]

Steiner J. 1967. The sequence of geological events and the dynamics of the Milky Way galaxy. Journal of the Geological Society of Australia. 14(1):99-131. [DOI: http://dx.doi.org/10.1080/00167616708728648]

Stephenson F.R., Morrison L.V. 1995. Long-Term Fluctuations in the Earth’s Rotation: 700 BC to AD 1990. Philosophical Transactions: Physical Sciences and Engineering. 351(1695):165-202. [DOI: http://dx.doi.org/10.1098/rsta.1995.0028]

Stothers R.B. 1985. Terrestrial record of the Solar System’s oscillation about the galactic plane. Nature. 317(6035):338-341. [DOI: http://dx.doi.org/10.1038/317338a0]

Svensmark H. 2007. Cosmoclimatology: a new theory emerges. Astronomy & Geophysics. 48(1):1.18-1.24. [DOI: http://dx.doi.org/10.1111/j.1468-4004.2007.48118.x]

Terra. 2012. Astrônomo brasileiro dá novo rumo à busca pelo Planeta X. Notícias. 23 mai. 2012. URL: http://noticias.terra.com.br/ciencia/astronomo-brasileiro-da-novo-rumo-a-busca-pelo-planeta-x,28a98116492da310VgnCLD200000bbcceb0aRCRD.html. Acesso: 29.11.2015.

Tiwari R.K., Rao K.N.N. 2003. Mega geocycles: echoes of astronomical events. Journal of the Geological Society of India. 62(2):181-190.

Tohver E. et al. 2012. Geochronological constraints on the age of a Permo-Triassic impact event: U-Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil.

Geochimica et Cosmochimica Acta. 86:214-227. [DOI: http://dx.doi.org/10.1016/j.gca.2012.03.005]

Toon O.B., Robock A., Turco R.P. 2008. Environmental consequences of nuclear war. Physics Today. 61(12):37-42. [DOI: http://dx.doi.org/10.1063/1.3047679]

Toon O.B., Turco R.P., Covey C. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics. 35(1):41-78. [DOI: http://dx.doi.org/10.1029/96RG03038]

Treloar N.C. 2002. Luni-Solar Tidal Influences on Climate Variability. International Journal of Climatology. 22(12):1527–1542. [DOI: http://dx.doi.org/10.1002/joc.783]

Turco R.P., Toon O.B., Ackerman T.P., Pollack J.B., Sagan C. 1983. Nuclear Winter: Global Consequences of Multiple Nuclear Explosion. Science. 222(4630):1283-1292. [DOI: http://dx.doi.org/10.1126/science.222.4630.1283]

USGS. 2000. The Sun and Climate. U.S. Geological Survey. Fact Sheet 0095-00. URL: http://pubs.usgs.gov/fs/fs-0095-00/fs-0095-00.pdf. Acesso: 29.11.2015.

UWA. 2013. Biggest extinction in history caused by climate-changing meteor. The University of Western Australia (UWA). 31 jul. 2013. URL: http://www.news.uwa.edu.au/201307315921/international/biggest-extinction--history-caused-climate-changing-meteor. Acesso: 29.11.2015.

Vail P.R., Mitchum R.W., Thompson S. 1977. Seismic stratigraphy and global changes in sea level 4, Global cycles of relative changes in sea level. In: Payton C.E. (ed.) 1977. Seismic Stratigraphy - Applications to Hydrocarbon Exploration (AAPG Memoir 26). Tulsa: American Association of Petroleum Geologists. p. 83-97. [ISBN: 0891813020; 516 p.]

Van Andel T.H. 1994. New views on an old planet: a history of global change. 2ª ed. Cambridge: Cambridge University Press. [ISBN: 9780521447553; 458 p.]

Versteegh G.J.M. 2005. Solar Forcing of Climate. 2: Evidence from the Past. Space Science Reviews. 120(3): 243–286. [DOI: http://dx.doi.org/10.1007/s11214-005-7047-4]

Veizer J., Godderis Y., Francois L.M. 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature. 408(6813):698-701. [DOI: http://dx.doi.org/10.1038/35047044]

Von Frese R.R.B. et al. 2009. GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochemistry, Geophysics, Geosystems. 10(2):Q02014. [DOI: http://dx.doi.org/10.1029/2008GC002149]

Von Frese R.R.B., Kim H.R., Leftwich T.E., Kim J.W., Golynsky A.V. 2013. Satellite magnetic anomalies of the Antarctic Wilkes Land impact basin inferred from regional gravity and terrain data. Tectonophysics. 585:185-195. [DOI: http://dx.doi.org/10.1016/j.tecto.2012.09.009]

Whitmire D.P., Jackson A.A. 1984. Are periodic mass extinctions driven by a distant solar companion? Nature. 308(5961):713-715. [DOI: http://dx.doi.org/10.1038/308713a0]

Whitmire D.P., Matese J.J. 1985. Periodic comet showers and planet X. Nature. 313(5997):36-38. [DOI: http://dx.doi.org/10.1038/313036a0]

Williams M.A.J. et al. 2009. Environmental impact of the 73 ka Toba super-eruption in South Asia. Palaeogeography, Palaeoclimatology, Palaeoecology. 284(3-4):295-314. [DOI: http://dx.doi.org/10.1016/j.palaeo.2009.10.009]

Willis J.K. 2010. Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophysical Research Letters. 37(6):L06602. [DOI: http://dx.doi.org/10.1029/2010GL042372]

Wilson I.R.G. 2013. Are global mean temperatures significantly affected by long-term lunar atmospheric tides? Energy & Environment. 24(3-4):497-508. [DOI: http://dx.doi.org/10.1260/0958-305X.24.3-4.497]

Witze A. 2016. Evidence grows for giant planet on fringes of Solar System. Nature. 529(7586):266-267. [DOI: http://dx.doi.org/10.1038/529266a]

Wood R.A., Vellinga M., Thorpe R. 2003. Global Warming and thermohaline circulation stability. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 361(1810):1961-1975. [DOI: http://dx.doi.org/10.1098/rsta.2003.1245]

Worm H.U. 1997. A link between geomagnetic reversals and events and glaciations. Earth and Planetary Science Letters. 147(1-4):55-67. [DOI: http://dx.doi.org/10.1016/S0012-821X(97)00008-3]

Yasuda I.S., Osafune H.T. 2006. Possible explanation linking 18.6-year period nodal tidal cycle with bi-decadal variations of ocean and climate in the North Pacific. Geophysical Research Letters. 33(8):L08606 [DOI: http://dx.doi.org/10.1029/2005GL025237]

Zhang C. 2005. Madden-Julian Oscillation. Reviews of Geophysics. 43(2):RG2003. [DOI: http://dx.doi.org/10.1029/2004RG000158]

Zuffo A.C. 2015. O Sol, o motor das variabilidades climáticas. Revista DAE. 63(198):6-24. [DOI: http://dx.doi.org/10.4322/dae.2014.142]

Terrae Didatica utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto, em que:

  • A publicação se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores;
  • Os originais não serão devolvidos aos autores;
  • Os autores mantêm os direitos totais sobre seus trabalhos publicados na Terrae Didatica, ficando sua reimpressão total ou parcial, depósito ou republicação sujeita à indicação de primeira publicação na revista, por meio da licença CC-BY;
  • Deve ser consignada a fonte de publicação original;
  • As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.

Downloads

Não há dados estatísticos.