Antibacterial Potential of Essential Oils Against Ground Beef Isolates

Autores

  • Lisiane Martins Volcão Universidade Federal do Rio Grande http://orcid.org/0000-0002-1922-3330
  • Juliana de Lima Marques Universidade Federal de Pelotas
  • Lucas Moreira dos Santos Universidade Federal de Pelotas
  • Suzane Olachea Allend Universidade Federal de Pelotas
  • Kamila da Cunha Furtado Universidade Federal de Pelotas
  • Rosana Serpa Universidade Federal do Ceará
  • Gladis Aver Ribeiro Universidade Federal de Pelotas

DOI:

https://doi.org/10.20396/san.v24i2.8650280

Palavras-chave:

Minimum Inhibitory Concentration. Meats. Spices. Bacterial.

Resumo

The objective of this study was to evaluate the antibacterial activity of different EOs against Escherichia coli, Salmonella spp., and coagulase-positive staphylococcus isolated from ground beef. The EOs had values varying from 0.78μl/mL to 100μl/mL, and the essential oil of Citrus lemon did not present any bacterial activity against the studied strains. For E. coli, the essential oil of Cinnamomum zeylanicum presented the best inhibitory activity (MIC = 0.78μl/mL to 1.56μl/mL). In Salmonella spp., the EOs of Cymbopogon citratus (MIC = 12.5μl/mL and 25.0μl/mL), C. zeylanicum (MIC = 25.0 µL/mL) and Ocimum basilicum (MIC = 6.25μl/mL, 12.5μl/mL and 50.0μl/mL) exhibited similar results. The EOs of C. zeylanicum and Eugenia caryophyllata demonstrated the lowest average values of study against coagulase-positive Staphylococcus (MIC = 3.12μl/mL, 6.25μl/mL and 12.5μl/mL). With the data obtained in the study, it can be observed the potential of EOs in the control of pathogenic food microorganisms, as well as validate future researches on the proprieties and active compounds of these products, besides the toxicity of these compounds and the possible alterations that can be caused on the food.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lisiane Martins Volcão, Universidade Federal do Rio Grande

Instituto de Ciência Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos. FURG. Atua na área de microbiologia de alimentos e ambiental, desenvolvimento de biopesticidas e atividade farmacológica de extratos de cogumelos.

Juliana de Lima Marques, Universidade Federal de Pelotas

Faculdade de Agronomia, Departamento de Ciência e Tecnologia de Alimentos.

Lucas Moreira dos Santos, Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico.

Suzane Olachea Allend, Universidade Federal de Pelotas

Instituto de Biologia, Departamento de Microbiologia e Parasitologia.

Kamila da Cunha Furtado, Universidade Federal de Pelotas

Faculdade de Agronomia, Departamento de Ciência e Tecnologia de Alimentos.

Rosana Serpa, Universidade Federal do Ceará

Laboratório de Microbiologia Clínica.

Gladis Aver Ribeiro, Universidade Federal de Pelotas

Instituto de Biologia, Departamento de Microbiologia e Parasitologia.

Referências

Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS. Development of a paper-based analytical device for colorimetric detection of select Foodborne pathogens. Analytical Chemistry. 2012; 84(6): 2900-2907, 2012.

Varela P, Fiszman SM. Exploring consumers’ knowledge and perceptions of hydrocolloids used as food additives and ingredients. Food Hidrocolloids. 2013; 30(1): 477-484.

Whitman H et al. A social-ecological perspective on harmonizing food security and biodiversity conservation. Regional Environmental Change. 2016; 1-11, 2016. doi: 10.1007/s10113-016-1045-9.

Samy RP, Manikandan J, Qahtani MA. Evaluation of aromatic plants and compounds used to fight multidrug resistant infections. Evidence-Based Complementary and Alternative Medicine. 2013; 2013: 1-17. doi: 10.1155/2013/525613

Yunes RA, Pedrosa RC, Filho VC. Fármacos e fitoterápicos: a necessidade do desenvolvimento da indústria de fitoterápicos e fitofármacos no Brasil. Química Nova. 2001; 24(1): 147-152.

Solórzano-Santos F, Miranda-Novales MG. Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology. 2012; 23(2): 136-141.

Barbosa IM et al. Efficacy of the combined application of oregano and rosemary essential oil for the control of Escherichia coli, Listeria monocytogenes and Salmonella enteretidis in leafy vegetables. Food Control. 2017; 59: 468-477. doi: 10.1016/j.foodcont.2015.06.2017

Mañas P, Pagán R. Microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology. 2005; 98(6): 1387-1399.

Kamdem SLS et al. Effect of mild heat treatments on the antimicrobial activity of essential oils of Curcuma longa, Xylopia aethiopica, Zanthoxylum xanthoxyloides and Zanthoxylum leprieurii against Salmonella enteritidis. Journal of

Essential Oils Research. 2015; 27(1): 52-60.

Silva N, Junqueira VCA, Silveira NFA, Taniwaki MH, Santos RFS, Gomes RAR. Manual de métodos de análise microbiológica de alimentos e água: 4th ed. São Paulo: Varela; 2010.

CLSI. National Committee for Clinical Laboratory Standards: Performance Standards for Antimicrobial Disk Diffusion Susceptibility Tests. Approved standard M02-A11, 2012.

CLSI. National Committee for Clinical Laboratory Standards. Methods for diluition antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A6, 2012.

Souza EL, Lima EO, Narain N. Especiarias: uma alternativa para o controle de qualidade sanitária e de vida útil de alimentos, frente a novas perspectivas da indústria alimentícia. Higiene Alimentar. 2003; 113(17): 38-42.

Viuda-Martos M, Ruiz-Navajas Y, Fernández-Lopez J, Pérez-Álvarez J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulate L.), grapefruit (Citrus paradise L.) and orange (Citrus sinensis L.) essential oils. Food Control. 2008; 19(12): 1130-1138.

Olasupo NA, Fiyzgerald DJ, Gasson MJ, Narbad, A. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters Applied in Microbiology. 2003; 37(6): 448-451.

Fischer K, Phillips CA. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. Journal of Applied Microbiology. 2006; 101(6): 1232-1240.

Espina L, Somolinos M, Lorán S, Conchello P, García D, Pagán, R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control. 2011; 22(6): 896-902.

Prashar A, Locke IC, Evans CS. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells. Cell Proliferation. 2006; 39(4): 241-248.

Chaieb K et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research. 2007; 21(6): 501-06.

Wang R, Wang R, Yang B. Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innovative Food Science & Emerging Technology. 2009; 10(2): 289-292.

Catherine AA, Deepika H, Negi PS. Antibacterial activity of eugenol and peppermint oil in model food systems. The Journal of Essential Oil Research. 2012; 24(5): 481-486.

Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used Brazil. Brazilian Journal of Microbiology. 2004; 35(4): 275-280.

Gurudatt PS et al. Changes in the essential oil content and composition of Origanum vulgare L. during annual growth from Kumaon Himalaya. Current Science. 2010; 98(8): 1010-1012.

Cimanga K et al. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of Ethnopharmacology. 2002; 79(2): 213-20.

Naik MI, Fomda BA, Jaykumar E, Bhat JA. Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacterial. Asian Pacific Journal of Tropical Medicine. 2010; 3(7): 535-538.

Millezi AF, Caixeta DS, Rossoni DF, Cardoso MG, Piccoli RH. In vitro antimicrobial properties of plant essential oils Thymus vulgaris, Cymbopogon citratus and Laurus nobilis against five important foodborne pathogens. Food Science and Technology. 2012; 32(1): 167-172.

Ennajar M et al. The influence of organ, season and drying method on chemical composition and antioxidant and antimicrobial activities of Juniperus phoenicea L. essential oils. Journal of Science and Food Agriculture. 2010; 90(3): 462-70.

Russo A et al. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food and Chemical Toxicology. 2013; 55: 42-47, 2013. doi: 10.1016/j.fct.2012.12.036

Demyttenaere JCR. The new European union flavoring regulation and its impact on essential oils: production of natural flavouring ingredients and maximum levels of restricted substances. Flavors and Fragrances. 2010; 23: 3-12. doi: 10.1002/ffj.2093

Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies and interactions with food matrix components. Frontiers in Microbiology – Antimicrobials, Resistance and chemotherapy. 2010; 3(12): 1-24.

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA: MINISTÉRIO DA SAÚDE. Diretoria colegiada, RDC nº 2: Regulamento Técnico sobre Aditivos Aromatizantes. Brasília, 2007. Acessed in: 10 oct 2016. Available: www.cidasc.sc.gov.br/inspecao/files/201208/resolu%c3%A3o-2.2007.pdf

EUROPEAN COMMISSION, Parlamento Europeu e do Conselho. Regulamento de Execução (UE) nº 872/2012: anexo I relative aos aromas e a determinados ingredientes alimentares com propriedades aromatizantes utilizados nos e sobre os generos alimentícios. Acessed: in 7 dec 2016. Available: www.europa.eu/rapid/press-releaseIP-12-1045pt.html

Cava-Roda R, Taboada-Rodríguez A, Valverde-Franco M, Marín-Iniesta. Antimicrobial activity of vanillin and mixture with cinnamon and clove essential oils in controlling Listeria monocytogenes genes and Escherichia coli O157:H7 in milk. Food Bioprocess and Technology. 2010; 5(6). doi: 10.1007/s11947-010-0484-4

Lv F, Liang H, Yuan Q, Li CI. In vitro antimicrobial effects and mechanism of action selected plant essential oil combinations against four food-related microorganisms. Food Research International. 2011; 44(9): 3057-3064.

FOOD AND DRUG ADMINISTRATION, U.S. Department of Health and Human Services. Substances generally prohibited from direct addition or use as human food, CFR Part 189. Acessed in: 7 dec 2016. Available: www.gpo.gov/fdsys/pkg/CFR-2016-title21-vol3/xlm/CFR-2016-title21-vol3-part189-subpartC.xlm

Donsí F, Annunziata M, Sessa M, Ferrari G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Food Science and Technology. 2011; 44(9): 1908-1914.

Downloads

Publicado

2017-12-14

Como Citar

1.
Volcão LM, Marques J de L, Santos LM dos, Allend SO, Furtado K da C, Serpa R, Ribeiro GA. Antibacterial Potential of Essential Oils Against Ground Beef Isolates. Segur. Aliment. Nutr. [Internet]. 14º de dezembro de 2017 [citado 19º de outubro de 2021];24(2):161-8. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/san/article/view/8650280

Edição

Seção

Artigo de Ciência e Tecnologia dos Alimentos