Sinergismo entre ácidos orgânicos e sorbato de potássio no controle de Aspergillus flavus

Autores

DOI:

https://doi.org/10.20396/san.v25i3.8652765

Palavras-chave:

Conservante. Fungo. Ácido fraco. Antifúngico. Sinergia.

Resumo

Devido aos riscos de contaminação por micotoxinas, o controle fúngico em alimentos deve ser adotar medidas desde o início do desenvolvimento microbiano. A substituição de fungicidas químicos por ácidos orgânicos (geralmente reconhecidos como seguro) desponta como uma perspectiva interessante. A pesquisa teve como objetivo determinar concentração inibitória mínima (CIM) de ácidos orgânicos, sorbato de potássio e respectivas combinações no controle de Aspergillus flavus NRRL 3251 produtor de aflatoxina B1. O inóculo de 104 esporos.mL-1 foi calculado baseado na contaminação real em milho e ração animal. As melhores CIM in vitro foram: combinação de ácido acético (AA 83,26 mM) + propiônico (AP 6,74 mM); AA (8,32 mM) + sorbato de potássio (SP 13,31mM) e AP (6,74 mM) + SP (33,28 mM). Considerando a dose comercialmente utilizada de ácido propiônico 0,5%, a combinação do ácido propiônico com sorbato de potássio e ácido acético poderia reduzir respectivamente cerca de 24,63 e 70,19% o custo em conservante.

Downloads

Não há dados estatísticos.

Biografia do Autor

Bianca Rebonatto, Universidade Tecnológica Federal do Paraná

Programa de Pós Graduação em Tecnologia de Alimentos. Depto Acadêmico de Química e Biologia. Tecnóloga e Mestre em Tecnologia de Alimentos pela Universidade Tecnológica Federal do Paraná, Câmpus Francisco Beltrão.

Janice Ruschel, Universidade Tecnológica Federal do Paraná

Depto Acadêmico de Química e Biologia. Tecnóloga em Alimentos pela Universidade Tecnológica Federal do Paraná, Câmpus Francisco Beltrão.

Naimara Vieira Prado, Universidade Tecnológica Federal do Paraná

Departamento Acadêmico Física, Estatística E Matemática. Doutorado em Estatística e Experimentação Agronômica,  professora na Universidade Tecnológica Federal do Paraná - UTFPR, Campus Francisco Beltrão.

Elisa Yoko Hirooka, Universidade Estadual de Londrina

Depto de Ciência  e Tecnologia de Alimentos. Doutora em Ciência de Alimentos e Professora do Programa de Pós Graduação em Ciência de Alimentos.

Alessandra Machado-Lunkes, Universidade Tecnológica Federal do Paraná

Depto Acadêmico de Química e Biologia. Doutora em Química e professora do Pós Graduação em Tecnologia de Alimentos da Universidade Tecnológica Federal do Paraná.

Elisabete Hiromi Hashimoto, Universidade Tecnológica Federal do Paraná

Depto Acadêmico de Química e Biologia. Mestre e Doutora em Ciência de Alimentos, professora do Programa de Pós Graduação em Tecnologia de Alimentos da Universidade Tecnológica Federal do Paraná.

Referências

Hassan, R, El-Kadi, S, Sand, M. Effect Of Some Organic Acids On Some Fungal Growth And Their Toxins Production. International Journal of Advances in Biology. 2015; 2: 1-11.

Didwania, N, Joshi, M. Mycotoxins: a critical review on occurrence and significance. International Journal of Pharmacy and Pharmaceutical Sciences. 2013; 5:1014-1019.

Bullerman, LB, Bianchini, A. Stability of mycotoxins during food processing. International Journal of Food Microbiology. 2007;.119:.140–146.

FDA- Food and Drug Administration. Select Committee on GRAS Substances (SCOGS) Opinion: Calcium Lactate, Lactic Acid. GRAS Substances (SCOGS) database. US Food and Drug Administration. 2015a.

FDA- Food and Drug Administration. Select Committee on GRAS Substances (SCOGS) Opinion: Acetic Acid; Sodium Acetate; Sodium Diacetate. GRAS Substances (SCOGS) database. US Food and Drug Administration. 2015b.

FDA- Food and Drug Administration. Select Committee on GRAS Substances (SCOGS) Opinion: Calcium propionate; Dilauryl thiodipropionate; Propionic acid; Sodium propionate; Thiodipropionic acid. GRAS Substances (SCOGS) database. US Food and Drug Administration. 2015c.

FDA- Food and Drug Administration. Select Committee on GRAS Substances (SCOGS) Opinion: Calcium sorbate, Potassium sorbate, Sodium sorbate, Sorbic acid. GRAS Substances (SCOGS) database. US Food and Drug Administration. 2015d.

Bellaver, C, Scheuermann, G. Aplicações dos ácidos orgânicos na produção de aves de corte. In: Conferência Avisul, 2005, Florianópolis. Anais. Florianópolis: [s.n.], 2005. 1-16.

Nobre, MO, Nascente, PS, Meireles, MC, Ferreiro, L. Drogas Antifúngicas para Pequenos e Grandes Animais. Ciência Rural. 2002; 32: 175-184.

FAO. Food and Agriculture Organization of the United Nations Good Practices for the Feed Industry - Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding. n.9 Roma: FAO Animal Production and Health, 2010.

Huang, Y, Wilson M, Chapman B, Hocking AD. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems. International Journal of Food Microbiology. 2010; 27: 33-36.

Silva, N, Junqueira, VCA, Silveira, NFA, Taniwaki, MH, Santos, RFS, Gomes, RAR. Manual de Métodos de Análise Microbiológicas de Alimentos. São Paulo: Varela; 2010.

Vicam. Aflatest instruction manual. Vicam, Watertown, MA: Vicam, 2002.

IAL. Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos para Análise de Alimentos. 4. ed. São Paulo: Instituto Adolfo Lutz, 2008.

Odds, F. C. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy. 2003; 52: 1-1.

Gierus, M, Sternowsky, S. Ração estruturada para maior produção animal – novos desafios para o processamento de alimentos em fábricas de ração. 2013. Disponível em: < https://pt.engormix.com/avicultura/artigos/racao-estruturada-maior-producao-t38402.htm >.

Maciorowski, K.G. Effects on poultry and livestock of feed contamination with bacteria and fungi. Animal Feed Science and Technology. 2007; 133: 109-136.

Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. RDC nº 7/11. Regulamento Técnico sobre limites máximos tolerados (LMT) para micotoxinas em alimentos. Diário Oficial da União, Brasília-DF, 18 fev. 2011. Seção 1, p.66-67.

Comunidade Européia. Regulamento Da Comunidade Européia. Instrução Normativa 2003/100. Substâncias Indesejáveis nos Alimentos para Animais. Diário Oficial da União Europeia. 31 out.2003, p.31-37.

Coradi, PC, Lacerda Filho, AF, Chaves, JBP, Melo, E C. Effects of the feed processing in the reduction of the microbiological contamination on the final product. Revista Brasileira de Produtos Agroindustriais. 2013; 15: 81-92.

Cramer, JA, Prestegard, JH. NMR studies of pH/induced transport of carboxylic acids across phospholipids vesicle membranes. Biochemical and Biophysical Research Communications.1977; 75:295-301.

O'Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Cambridge, UK: Royal Society of Chemistry, 2013.

Weast, R.C. (ed.). Handbook of Chemistry and Physics. 60th ed. Boca Raton, Florida: CRC Press Inc., 1979., p. B-114

Guynot, ME, Ramos, AJ, Sanchis, V, Marí, S. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5–5.5). International Journal of Food Microbiology. 2005; 101:161-168.

Peláez, AM, Serna Cataño, CA, Quintero Yepes, EA, Gamba Villarroel, RR, De Antoni, GL, Giannuzzi, L. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control. 2012; 24: 177-183.

Higgins, C, Brinkhaus, F. Efficacy of several organic acids against mould. Journal of Applied Poultry Research. 1999; 8:480-487.

Muynck, C., Leroy AI, De Maeseneire S, Arnaut F, Soetaert W, Vandamme EJ. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiologial Research. 2004; 54: 339-346.

Lind, H, Jonsson, H, Schnürer, J. Antifungal effect of dairy propionibacteria contribution of organic acids. International Journal of Food Microbiology. 2005; 98: 157-65.

Piper, PW. Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radical Biology and Medicine. 1999; 27 (11): 1219-1227.

Stratford, M, Anslow, PA. Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Letters in Applied Microbiology. 1998; 27: 203-206.

Luther, MA, Cai, GZ, Lee, JC. Thermodynamics of dimer and tetramer formations in rabbit muscle phosphofructokinase. Biochemistry. 1986; 25: 7931–7937.

Legisa, M, Grdadolnik, SG. Influence of Dissolved Oxygen Concentration on Intracellular pH and Consequently on Growth Rate of Aspergillus niger. Food Technology and Biotechnology. 2002; 40: 27-32.

Lachowicz, KJ, Jones GP, Briggs DR, Bienvenu FE, Wan J, Wilcock A, Coventry MJ. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food microflora. Letters in Applied Microbiology. 1998; 26: 209-214.

Nazer, AI, Kobilinsky, A, Tholozan, JL, Dubois-Brissonnet, F. Combinations of food antimicrobials at low levels to inhibit the growth of Salmonella sv. Typhimurium: a synergistic effect. Food Microbiology. 2005; 22: 391-398.

Periago, PM, Palop, A, Fernández, PS. Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells. Food Science and Technology. 2002; 7 (6): 487-492.

York, GK, Vaughn, RH. Mechanisms in the inhibition of microorganisms by sorbic acid. Journal of Bacteriology. 1964; 88:411–417.

Hansch, C., Leo, A., D. Hoekman. Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society. 1995; 4.

Brul, S, Coote, P. Preservative agents in foods Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology. 1999; 50:1-17.

Molina, M, Giannuzzi, L. Combined effect of temperature and propionic acid concentration on the growth of Aspergillus parasiticus. Food Research International. 1999; 32:677-688.

Kosegarten, CE, Ramírez-Corona N, Mani-López E, Palou E, López-Malo A. Description of Aspergillus flavus growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration, pH, and cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-detection models. International Journal of Food Microbiology. 2017; 240: 115-123.

Downloads

Publicado

2018-10-17

Como Citar

1.
Rebonatto B, Ruschel J, Prado NV, Hirooka EY, Machado-Lunkes A, Hashimoto EH. Sinergismo entre ácidos orgânicos e sorbato de potássio no controle de Aspergillus flavus. Segur. Aliment. Nutr. [Internet]. 17º de outubro de 2018 [citado 28º de outubro de 2021];25(3):114-25. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/san/article/view/8652765

Edição

Seção

Artigo de Ciência e Tecnologia dos Alimentos

Artigos mais lidos pelo mesmo(s) autor(es)