Banner Portal
Métodos de avaliação de isótopos estáveis (δ2h E δ18o) na hidrologia: uma revisão
PDF

Palavras-chave

Isótopos estáveis. Hidrologia. Fracionamento. Gestão integrada dos recursos hídricos.

Como Citar

BARBOSA, N. da S.; BARBOSA, N. da S.; SALLES, L. de Q. Métodos de avaliação de isótopos estáveis (δ2h E δ18o) na hidrologia: uma revisão. Terrae Didatica, Campinas, SP, v. 14, n. 2, p. 157–172, 2018. DOI: 10.20396/td.v14i2.8649972. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8649972. Acesso em: 2 mar. 2024.

Resumo

Atualmente, através do ciclo hidrológico pode-se observar que toda a água da Terra é de alguma forma afetada por atividades antrópicas. Com a perspectiva de crescente escassez, as decisões de onde extrair, utilizar e administrar a água deve ser baseada em informações confiáveis, de forma a proteger este recurso para as gerações futuras. Nesse contexto, a utilização dos isótopos estáveis na hidrologia possibilita interpretações da origem e mecanismos de recarga das águas subterrâneas, separação de hidrogramas, drenança vertical entre aquíferos, riscos de salinização e contaminação dos recursos hídricos, dentre outros. A razão pelo qual os isótopos estáveis são úteis nos estudos hidrológicos se deve às reações físico-químicas entre as espécies químicas, que promovem um fracionamento dos isótopos do mesmo elemento entre reagentes e produtos. Os dados isotópicos de δ 18O e δ 2H refletem os valores das precipitações médias locais. Esses geralmente são modificados por processos de difusão que podem alterar os valores isotópicos antes que a água alcançe a zona saturada. Sua importância em relação aos estudos hidrológicos tradicionais é que os isótopos estáveis fazem parte da própria molécula de água, tornando as interpretações mais precisas e independentes do grau de variabilidade e frequência de amostragem. Sob essa perspectiva, nos dias atuais, a integração do maior número possível de marcadores químicos e isotópicos constitui uma importante fronteira de pesquisa hidrológica e na gestão integrada dos recursos hídricos.

https://doi.org/10.20396/td.v14i2.8649972
PDF

Referências

Bajjali W., Abu-Jaber N. 2001. Climatological signals of the paleogroundwater in Jordan. J. Hydrol. 243:133–147. https://doi.org/10.1016/S0022-1694(00)00409-1.

Barbosa N.S. 2009. Hidrogeologia do Sistema Aquífero Urucuia nas bacias hidrográficas dos rios Formoso e Arrojado. Salvador-Bahia: Instituto de Geociências. Universidade Federal da Bahia. 98p. (Dissertação de mestrado).

Barbosa N.S. 2017. Hidrogeologia do Sistema Aquífero Urucuia, Bahia. Salvador-Bahia: Instituto de Geociências. Universidade Federal da Bahia. 168p. (Tese de Doutorado).

Battaglin W.A., Kendall C., Chang C.C.Y., Silva S.R., Campbell D.H. 2001. Chemical and Isotopic Composition of Organic and Inorganic Samples from the Mississippi River and its Tributaries, 1997–98. In: USGS Water Resources Investigation Report 01-4095, 57p.

Bigeleisen J., Meyer M.G. 1947. Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics, 15:261-267. http://dx.doi.org/10.1063/1.1746492.

Brinkmann R., Eichler R., Ehhalt D., Munnich K.O. 1963. Über den deuterium-gehalt von niederschlags-und grundwasser. Naturwissenschaften, 19:611–612. DOI: 10.1007/BF00632374.

Chaib W., Kherici N. 2014. Hydrochemistry and geothermometry of an Albian aquifer from Oued Righ region in northeastern Algerian Sahara. Geothermal Energy, 2:3. DOI: 10.1186/s40517-014-0003-3.

Chang C.C.Y., Kendall C., Silva S.R., Battaglin W.A., Campbell D.H. 2002. Nitrate stable isotopes: tools for determining nitrate sources and patterns among sites with different land uses in the Mississippi Basin. Can. J. Fish. Aquat. Sci. 59:1874–1885. https://doi.org/10.1139/f02-153.

Claassen H.C., Downey J.S. 1995. A model for deuterium and oxygen-18 isotope changes during evergreen interception of snowfall. Water Resour. Res. 31(3):601–618. DOI: 10.1029/94WR01995.

Clark I.D. 1987. Groundwater resources in the Sultanate of Oman: origin, circulation times, recharge processes and paleoclimatology. Isotopic and geochemical approaches. Université de Paris-Sud, Orsay, France, 264p (Doctoral thesis).

Clark I.D., Fritz P. 1989. Environmental Isotopes in Hydrogeology. New York, CRC Press. 328p.

Clark I.D., Ravencroft P., Fritz P. 1989. Origin and age of coastal groundwaters in Northern Oman. Natuurwet. Tijdschr. 70:75-84.

Coplen T.B., Herczeg A.L., Barnes C. 2000. Isotope engineering - using stable isotopes of the water molecule to solve practical problems. In: Cook P., Herzceg A. Eds. 2000. Environmental Tracers in Subsurface Hydrology. Kluwer Academic, Norwell, MA, p. 79-110.

Craig H.C. 1961a. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science. 133:1833-1834. DOI: 10.1126/science.133.3467.1833.

Craig H.C. 1961b. Isotopic variations in meteoric waters. Science. 133:1702-1703. DOI: 10.1126/science.133.3465.1702.

Dansgaard, W. 1964. Stable Isotopes in Precipitation. Tellus. 16:436-468. DOI: 10.1111/j.2153-3490.1964.tb00181.x.

Darlin W.G., Bath A.H. 1988. A stable isotope study of recharge processes in the English Chalk. Journal of Hydrology. 101:41-46. https://doi.org/10.1016/0022-1694(88)90026-1

Dea´k J., Coplen T.B. 1996. Identification of Pleistocene and Holocene groundwaters in Hungary using oxygen and hydrogen isotopic ratios. In Isotopes in Water Resources Management, IAEA, Vienna, vol. 1, 438p.

Deines P. 1980. The isotopic composition of reduced organic carbon. In: Fritz P., J. Ch. Fontes J.-C. Eds. Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam, vol. 1, p. 329-406.

Deines P., Langmuir D., Harmon R.S. 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim. Acta. 38:1147–1164. https://doi.org/10.1016/0016-7037(74)90010-6.

Dewalle D.R., Swistock B.E. 1994. Differences in oxygen-18 content of throughfall and rainfall in hardwood and coniferous forests. Hydrol. Process. 8:75–82. DOI: 10.1002/hyp.3360080106.

Durka W., Schulze E.D., Gebauer G., Voerkelius S. 1994. Effects of forest decline on uptake and leaching References of deposited nitrate determined from 15N and 18O measurements. Nature. 372:765–767. doi:10.1038/372765a0.

Dutton A.R., Simpkins W.W. 1989. Isotopic evidence for paleohydrologic evolution of ground-water flowpaths, southern Great Plains, United States. Geology 17(7):653–656. https://doi.org/10.1130/0091-7613(1989)0170653:IEFPEO2.3.CO;2.

Epstein S., Mayeda T.K. 1953. Variations of the 18O/16O ratio in natural waters. Geochimica et Cosmochimica Acta. 4:213. DOI: 10.1016/0016-7037(53)90051-9.

Fekete B.M., Vörösmarty C.J, Grabs, W. 1999. Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances. Tech. Rep. 22, Global Runoff Data Cent., Koblenz, Germany. 108p.

Fekete B.M., Gibson J.J., Aggarwal, P., Vörösmarty C.J. 2006. Application of isotope tracers in continental scale hydrological modeling. Journal of Hydrology. 330:444-456. https://doi.org/10.1016/j.jhydrol.2006.04.029.

Fontes J.-Ch. 1981. Palaeowaters. In: Stable Isotope Hydrology-Deuterium and Oxygen-18 in the Water Cycle. Technical Reports Series n°. 2101. IAEA, Vienna, p. 273–302.

Fontes J.-Ch., Andrews J.N., Edmunds W.M.; Guerre A., Travi Y. 1991. Paleorecharge by the Niger River (Mali) deduced from groundwater geochemistry. Water Resour. Res. 27(2):199–214. DOI: 10.1029/90WR01703.

Fontes, J.-Ch., Edmunds, W.M. 1989. The use of environmental isotope techniques in arid zone hydrology. A critical review. Technical Documents in Hydrology, UNESCO, Paris.

Fontes J.-Ch., Gasse F., Andrews J.N. 1993. Climatic conditions of Holocene groundwater recharge in the Sahel zone of Africa. In Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. IAEA, Vienna, p. 271–292.

Friedman I. 1953. Deuterium content of natural waters and other substances. Geochimica et Cosmochimica Acta. 4:89-103. https://doi.org/10.1016/0016-7037(53)90066-0.

Fritz P., Fontes J.-Ch. (Eds.). 1980. Handbook of Environmental Isotope Geochemistry, vol. 1, The Terrestrial Environment., B. Elsevier, Amsterdam, The Netherlands, 557p.

Fry B. 1991. Stable isotope diagrams of freshwater foodwebs. Ecology. 72:2293–2297. DOI: 10.2307/1941580.

Gat J.R., Tzur Y. 1967. Modification of the isotopic composition of rainwater by processes which occur before groundwater recharge. In: Isotope Hydrol.: Proc. Symp. IAEA, Vienna, p. 49-60.

Genereux D.P. 1998. Quantifying uncertainty in tracer-based hydrograph separations. Water Resour. Res. 34:915–920. DOI: 10.1029/98WR00010.

Ging P.B., Lee R.W., Silva S.R. 1996. Water chemistry of Shoal Creak and Waller Creek, Austin Texas, and potential sources of nitrate. U.S. Geological Survey Water Resources Investigations, Rep. 96-4167.

Gonfiantinni R., Conrad G., Fontes J.-Ch., Sauzay G., Payne B.R. 1974. Étude isotopi-que de la napped u Continental Intercalaire et de ses relations avec les autres nappes du Sahara Septentrional. In: Isotope Techniques in Grounwater Hydrology 1974, Vol 1, IAEA Symposium, Vienna: 227-241.

Gonfiantinni R., Gallo G., Payne B.R., Taylor C.B. 1976. Environmental Isotopes and Hydrogeochemistry in Groundwater of Gran Canaria, In: Interpretation of Environmental Isotopes and Hydrochemical Data in Ground Water Hydrology, Vienna: IAEA, 159-170.

Hallberg, G. R. 1986. From hoes to herbicides - agriculture and groundwater quality. Journal Soil and Water Conservation. 41:357–364.

Hewlett, J. D., Hibbert, A. R. 1967. Factors affecting the response of small watersheds to precipitation in humid areas. Proc. 1st Int. Symp. Forest Hydrol. 275–290.

Hoefs J. 1997. Stable Isotopes Geochemistry, 3rd ed. Springer-Verlag, 236p.

Hursh C.R., Brater E.F. 1941. Separating storm-hydrographs from small drainage-areas into surface and subsurface flow. Eos, Transactions American Geophysical Union. 22(3):863-871. DOI: 10.1029/TR022i003p00863.

IAEA. 1983. Tracer Methods in Isotope Hydrology. Vienna, Austria. 195p.

Junk G., Svec H. 1958. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta. 14:234–243. https://doi.org/10.1016/0016-7037(58)90082-6.

Keeney D. 1986. Sources of nitrate to ground water. CRC Critical Review Environmental Control. 16:257–304. http://dx.doi.org/10.1080/10643388609381748

Kendall C. 1988. Tracing nitrogen sources and cycling in catchments. In: Kendall C., McDonnell J. Eds. Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, p. 519–576.

Kendall C., Sklash M.G., Bullen T.D. 1995. Isotope tracers of water and solute sources in catchments. In: Trudgill S. Ed. Solute Modelling in Catchment Systems. Wiley, Chichester, UK, p. 261–303.

Kendall, C., Doctor, D.H., 2005. Stable isotope applications in Hydrologic Studies. In: Drever J.I. Ed. Surface and ground water, weathering, and soils: Treatise on Geochemistry, v. 5, Chapter 11, p. 319-364.

Kennedy V.C., Kendall C., Zellweger G.W., Wyermann T.A., Avanzino R.A. 1986. Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River Basin, California. J. Hydrol. 84:107–140. https://doi.org/10.1016/0022-1694(86)90047-8.

Kimmelmann E., Silva A.A., Rebouças A.C., Santiago M.M.F., Silva R.B.G. 1989. Isotopic study of the Botucatu aquifer system in the brazilian portion of the Paraná basin. In: Regional Seminar For Latin America on the Use of Isotope Techniques in Hydrology, 1989, Ciudad de México. Abstracts. Ciudad de México, OIEA, p. 51-71.

Korzun V.I. 1978. World Water Balance and Water Resources of the Earth, vol. 25 of Studies and Reports in Hydrology (UNESCO, Paris).

Leng M.J. (Ed.). 2005. Isotopes in Palaeoenvironmental Research. In: Darling W.G., Bath A.H., Gibson J.J., Rozanski K. Eds. Isotopes in Water. Springer, Dordrecht, Netherlands. p. 1-66.

Madison R.J., Brunett J.O. 1984. Overview of the occurrence of nitrate in ground water of the United States. In: USGS National Water Summary: U.S. Geological Survey, Water-Supply Paper 2275, p. 93–105.

Majoube M. 1971. Fractionnement of oxygène-18 et en deuterium entre l’eau et sa vapeour. Journal of Chemical Physics, 197:1423-1436. https://doi.org/10.1051/jcp/1971681423.

Mathieu R., Bariac T. 1996. An isotopic study (2H and 18O) on water movements in clayey soils under a semiarid climate. Water Resourses Research, 32:779-789. DOI: 10.1029/96WR00074.

Merlivat L., Jouzel J. 1979. Global climatic interpretation of the deuterium – oxygen-18 relationship for precipitation. Journal of Geophysical Research, 84:5029-5033. DOI: 10.1029/JC084iC08p05029.

Mook W.G. (Ed). 2000. Environmental Isotopoes in the Hydrological Cycle: Principles and Aplications. In: Technical Documents in Hydrology, n°39, Vol. 1. Introduction. Theory, Methods, Review. Unesco, Paris, France. 221 p.

Oki T., Kanae S. 2006. Global hydrological cycles and world water resources. Science. 313:1068–1072. DOI: 10.1126/science.1128845.

Payne B.R. The Status of Isotope Hydrology Today. Journal of Hydrology. 100:207-237. https://doi.org/10.1016/0022-1694(88)90186-2.

Park R., Epstein S. 1961. Metabolic fractionation of 13C and 12C in plants. Plant Physiol. 36:133–138.

Pearce A.J. 1990. Streamflow generation processes: Na Austral view. Water Resources Research 26:1263-1272. DOI: 10.1029/WR026i012p03037.

Pearce A.J., Stewart M.K., Sklash M.G. Storm runoff generation in humid headwater catchments: 1. Where does the water come from? Water Resour. Res. 22:1263-1272. DOI: 10.1029/WR022i008p01263.

Pimentel A.L., Aquino R.F., Silva R.C.A., Vieira C.M.B. 2000. Estimativa da recarga do aquífero Urucuia da sub-bacia do rio das Fêmeas – Oeste da Bahia, utilizando separação de hidrogramas. In: I Congresso sobre aproveitamento e gestão de recursos hídricos em países de idioma português, Rio de Janeiro – RJ. 11p.

Revenga, C. 2000. Will the be enough water? In: Mock G. Ed. “Pilot Analysis of Global Ecosystems: Freshwater Systems. EarthTrends World Resources Institute. p. 1-6.

Revenga C., Brunner J., Henniger N., Kassem K., Payne R. 2000. Pilot Analysis of Global Ecosystems: Freshwater Systems. Washington, DC: World Resources Institute. 65p.

Rozanski K., Araguás-Araguás L., Gonfiantinni R. 1993. Isotopic patterns in modern global precipitation. In: Continental Isotopic Indicators of Climate, American Geophysical Union Monograph. 36p.

Schwartz F.W., Ibaraki, M. 2011. Groundwater: A Resource in Decline. Elements. 7:175-179. DOI: 10.2113/gselements.7.3.175.

Shanley J.B., Kendall C., Smith T.M., Wolock D.M., McDonnel J.J. 2001. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA. Hydrol. Process. 16:589–609. DOI: 10.1002/hyp.312.

Shiklomanov I.A. Ed. 1997. Assessment of Water Resources and Water Availability in the World (World Meteorological Organization/Stockholm Environment Institute, Geneva, Switzerland). 88p.

Sklash M.G., Farvolden R.N. 1979. The role of groundwater in storm runoff. Journal of Hydrology 43:45-65. https://doi.org/10.1016/0022-1694(79)90164-1.

Sklash M.G., Farvolden R.N. 1982. The use of environmental isotopes in the study of high-runoff episodes in streams. In: Perry E.C., Montgomery C. Eds. Isotope Studies of Hydrologic Processes. Northern Illinois University Press, DeKalb, Illinois, p. 65-73.

Silva S.R., Ging, P.B., Lee R.W., Ebbert J.C., Tesoriero A.J., Inkpen E.L. 2002. Forensic applications of nitrogen and oxygen isotopes of nitrate in an urban environment. Environ. Foren. 3:125–130. https://doi.org/10.1006/enfo.2002.0086.

Spalding R.F., Exner M.E. 1993. Occurrence of nitrate in groundwater - a review. Journal of Environmental Quality. 22:392–402.

Staniaszek P., Halas S. 1986 Mixing effects of carbonate dissolving waters on chemical and 13C/12C compositions. Nordic Hydrol. 17:93–114.

Urey H.C. 1947. The thermodynamic properties of isotopic substances. Journal of Chemical Society. 1947:562-581. DOI: 10.1039/JR9470000562

Velderman B.J 1993. Groundwater Recharge and Contamination: Sensitivity Analysis for Carbonate Aquifers in South-Eastern Ontario – The Jock River basin Study. University of Ottawa, Ottawa, Canada, 126p. (M.Sc. Thesis).

Vörösmarty C.J, Keshav P., Fekete B.M., Copeland A.H., Holden J., Marble J., Lough J.A. 1997. The Storage and Aging of Continental Runoff in large Reservoir Systems of the World. Ambio, 26(4):210-219.

WBCSD, UNEP. 1998. Industry, Fresh water and sustainable development. 66p.

WMO. 1997. Comprehensive Assessment of the Freshwater Resources of the World. Stockholm, Sweden: WMO and Stockholm Environment Institute. 54p.

Yurtsever Y. 1997. Role and contribution of environmental tracers for study of sources and processes of groundwater salinization. In: Hydrochemistry (Proceedings of the Rabat Symposium, April 1997) IAHS Publ.no. 244. p. 3-12.

Yurtsever Y., Payne B.R. 1978. Application of environmental isotopes to groundwater investigations in Qatar. In: Proc. Symp. Isot. Hydrol., IAEA, Vienna, vol. II. p. 465-490.

Terrae Didatica utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto, em que:

  • A publicação se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores;
  • Os originais não serão devolvidos aos autores;
  • Os autores mantêm os direitos totais sobre seus trabalhos publicados na Terrae Didatica, ficando sua reimpressão total ou parcial, depósito ou republicação sujeita à indicação de primeira publicação na revista, por meio da licença CC-BY;
  • Deve ser consignada a fonte de publicação original;
  • As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.

Downloads

Não há dados estatísticos.