Perspectivas atuais sobre tecidos moles não mineralizados em fósseis de dinossauros não avianos

Autores

DOI:

https://doi.org/10.20396/td.v16i0.8659539

Palavras-chave:

Paleontologia molecular, Preservação excepcional, Moléculas orgânicas, Mesozoico

Resumo

Dados a respeito da frequência de achados de tecidos moles não mineralizados ainda são escassos e os que já foram sistematizados estão dispersos na literatura, associando a ideia das descobertas a fenômenos isolados. Este artigo apresenta uma revisão da literatura, publicada nos últimos 50 anos, com o objetivo de compreender a frequência de tecidos moles não mineralizados em fósseis de dinossauros não avianos e os atuais limites temporais de sobrevivência esperada dessas biomoléculas. Os resultados identificaram 52 artigos que descrevem material orgânico preservado em fósseis de dinossauros não avianos, considerados geológica, geográfica e taxonomicamente abrangentes nas rochas mesozoicas. Ainda assim, acredita-se que a frequência é subnotificada devido à atual resistência em aceitar as descobertas como sendo de remanescentes orgânicos e à falta de recursos para esse tipo de detecção. A partir do desenvolvimento de novas tecnologias, pode-se prever que tais achados provavelmente serão a norma e não a exceção.

Downloads

Não há dados estatísticos.

Biografia do Autor

Everton Fernando Alves, Universidade Estadual de Maringá

Mestre em Ciências (Imuenogenética) pela Universidade Estadual de Maringá . Especialização em Paleontologia e Cultura pela Faculdade Futura, São Paulo. Coordenador do curso de extensão “Paleontologia básica” do Museu Dinâmico Interdisciplinar da Universidade Estadual de Maringá.

Marcio Fraiberg Machado, Faculdade Adventista Paranaense

Doutor em Educação pela Pontifícia Universidade Católica do Rio Grande do Sul. Professor de Ciências Naturais e Biologia da Rede Pública e Privada. Professor de Ciências Biológicas aplicadas à Enfermagem pela Faculdade Adventista Paranaense.

Referências

Allentoft, M. E., Collins, M., Harker, D., Haile, J., Oskam, C. L., Hale, M. L., Campos, P. F., ..., & Bunce, M. (2012). The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc Biol Sci., 279(1748), 4724-33. doi: 10.1098/rspb.2012.1745.

Alleon, J., Bernard, S., Le Guillou, C., Marin-Carbonne, J., Pont, S., Beyssac, O., McKeegan, K. D., & Robert, F. (2016). Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat Commun., 7, 11977. doi: 10.1038/ncomms11977.

Alleon, J.,Bernard, S., Le Guillou, C., Daval, D., Skouri-Panet, F., Kuga, M., &Robert, F. (2017). Organic molecular heterogeneities can withstand diagenesis. Sci. Rep., 7(1):1508. doi: 10.1038/s41598-017-01612-8.

Allison, P. A., & Briggs, D. E. G. (1993). Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic. Geology, 21(6), 527-530. doi: 10.1130/0091-7613.

Allison, P.A. (1988). Konservat-Lagerstätten: cause and classification. Paleobiology, 14(4), 331-344. doi: 10.1017/S0094837300012082.

Anderson, G. S., & Bell, L. S. (2016). Impact of Marine Submergence and Season on Faunal Colonization and Decomposition of Pig Carcasses in the Salish Sea. PLoS One, 11(3), e0149107. doi: 10.1371/journal.pone.0149107.

Anderson, K. (2016). Dinosaur Tissue: A Biochemical Challenge to the Evolutionary Timescale. Answers in Depth.

Arbour, V. M., & Evans, D. C. (2017). A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R Soc Open Sci., 4(5), 161086. doi: 10.1098/rsos.161086.

Armitage, M. H. (2001). Scanning electron microscope study of mummified collagen fibers in fossil tyrannosaurus rex bone. Crs Q., 38(2), 61-66.

Armitage, M. H., & Anderson, K. L. (2013). Soft sheets of fibrillar bone from a fossil of the supraorbital horn of the dinosaur Triceratops horridus. Acta Histochem., 115(6), 603-608. doi: 10.1016/j.acthis.2013.01.001.

Armitage, M. H., & Anderson, K. L. (2014). Light and Electron Microscopic Study of Soft Bone Osteocytes From a Triceratops horridus Supraorbital Horn. Microscopy and Microanalysis, 20(Suppl. S3), 1274-1275. doi: 10.1017/S1431927614008101

Asara, J. M., Schweitzer, M. H., Freimark, L. M., Phillips, M., & Cantley, L. C. (2007a). Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science, 316(5822), 280-285. doi: 10.1126/science.1137614.

Asara, J. M., Garavelli, J. S., Slatter, D. A., Schweitzer, M. H., Freimark, L. M., Phillips, M., & Cantley, L. C.(2007b). Interpreting sequences from mastodon and T. Rex. Science, 317(5843), 1324-1325. doi: 10.1126/science.317.5843.1324.

Bada, J., Wang, X. S., & Hamilton, H. (1999). Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philos Trans R Soc Lond B Biol Sci., 354(1379), 77-87. doi: 10.1098/rstb.1999.0361.

Bailleul, A. M., Zheng, W., Horner, J. R., Hall, B. K., Holliday, C. M., & Schweitzer, M. H. (2020). Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage. National Science Review, 0, 1-8. doi: 10.1093/nsr/nwz206.

Bailleul, A. M., O’Connor, J., & Schweitzer, M. H. (2019). Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ, 7, e7764. doi: 10.7717/peerj.7764.

Benton, M. J. (1998). Dinosaur fossils with soft parts. Trends Ecol Evol., 13(8), 303-4. doi: 10.1016/s0169-5347(98)01420-7.

Bern, M., Phinney, B. S., & Goldberg, D. (2009). Reanalysis of Tyrannosaurus rex Mass Spectra. J. Proteome Res., 8(9), 4328-4332. doi: 10.1021/pr900349r.

Bertazzo, S., Maidment, S. C., Kallepitis, C., Fearn, S., Stevens, M. M., & Xie, H. N. (2015). Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat Commun., 6,7352. doi: 10.1038/ncomms8352.

Boatman, E. M., Goodwin, M. B., Holman, H. N., Fakra, S., Zheng, W., Gronsky, R., &Schweitzer, M. H. (2019). Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Sci Rep., 9(1), 1-12. doi: 10.1038/s41598-019-51680-1.

Bobrovskiy, I., Hope, J. M., Ivantsov, A., Nettersheim, B. J., Hallmann, C., & Brocks, J. J. (2018). Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science, 361(6408), 1246-1249. doi: 10.1126/science.aat7228.

Brand, L. R., Hussey, M., & Taylor, J. (2003a). Decay and Disarticulation of Small Vertebrates in Controlled Experiments. Journal of Taphonomy, 1(2), 69-95.

Brand, L. R., Hussey, M., & Taylor, J. (2003b). Taphonomy of Freshwater Turtles: Decay and Disarticulation in Controlled Experiments. Journal of Taphonomy, 1(4), 233-245.

Briggs, D. E. G. (2003). The Role Of Decay And Mineralization In The Preservation Of Soft-Bodied Fossils. Annual Review of Earth and Planetary Sciences, 31, 275-301. doi: 10.1146/annurev.earth.31.100901.144746.

Briggs, D. E. G., Kear, A. J., Martill, D. M., & Wilby, P. R. (1993). Phosphatization of soft-tissue in experiments and fossils. Journal of the Geological Society, 150, 1035-1038. doi: 10.1144/gsjgs.150.6.1035.

Briggs, D. E. G., Wilby, P. R., Pérez-Moreno, B.P., Sanz, J. L., & Fregenal-Martínez, M. (1997). The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las Hoyas, Spain. Journal of the Geological Society, 154(4), 587-588. doi: 10.1144/gsjgs.154.4.0587.

Brown, C. M., Henderson, D. M., Vinther, J., Fletcher, I., Sistiaga, A., Herrera, J., & Summons, R. E. (2017). An exceptionally preserved three-dimensional armored dinosaur reveals insights into coloration and cretaceous predator-prey dynamics. Curr Biol.,27(16), 2514-2521. doi: 10.1016/j.cub.2017.06.071.

Buckley, M., & Collins, M.J. (2011). Collagen survival and its use for species identification in Holocene-Lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua, 1(1), e1. doi: 10.4081/antiqua.2011.e1.

Buckley, M., Walker, A., Ho, S. Y., Yang, Y., Smith, C., Ashton, P., Oates, J. T., ..., & Collins, M. J. (2008). Comment on "Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry". Science, 319(5859), 33c. doi: 10.1126/science.1147046.

Buckley, M., Warwood, S., van Dongen, B., Kitchener, A. C., &Manning, P. L. (2017). A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proc Biol Sci., 284(1855), pii:20170544. doi: 10.1098/rspb.2017.0544.

Butterfield, N. J. (2003). Exceptional fossil preservation and the Cambrian explosion. Integr Comp Biol., 43(1), 166-177. doi: 10.1093/icb/43.1.166.

Butterfield, N. J., Balthasar, U., & Wilson, L. A. (2007). Fossil diagenesis in the burgess shale. Palaeontology, 50(3), 537-543. doi: 10.1111/j.1475-4983.2007.00656.x.

Carvalho, I. S. (2010). Paleontologia: conceitos e métodos. (3. ed.). Rio de Janeiro, RJ: Interciência.

Chin, K., Eberth, D. A., Schweitzer, M. H., Rando, T. A., Sloboda, W. J., & Horner, J. R. (2003). Remarkable preservation of undigested muscle tissue within a Late Cretaceous tyrannosaurid coprolite from Alberta, Canada. Palaios, 18(3), 286-94. doi: 10.1669/0883-1351(2003)018<0286:rpoumt>2.0.co;2.

Cleland, T. P., Schroeter, E. R., Zamdborg, L., Zheng, W., Lee, J. E., Tran, J. C., Bern, M., & Schweitzer, M. H. (2015). Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J Proteome Res., 14(12), 5252-5262. doi: 10.1021/acs.jproteome.5b00675.

Cody, G. D., Gupta, N. S., Briggs, D. E. R., Kilcoyne, A. L. D., Summons, R. E., Kenig F., Plotnick, R. E., & Scott, A. C. (2011). Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology, 39(3), 255-258. doi: 10.1130/G31648.1.

Collins, M. J., Riley, M. S., Child, A. M., &Turner-Walker, G. (1995). A basic mathematical simulation of the chemical degradation of ancient collagen. J Archaeol Sci., 22(2), 175-183. doi: 10.1006/jasc.1995.0019.

Collins, M. J., Gernaey, A. M., Nielsen-Marsh, C. M., Vermeer, C., & Westbroek, P. (2000). Slow rates of degradation of osteocalcin: green light for fossil bone protein?. Geology, 28, 1139-1142. doi: 10.1130/0091-7613(2000)28<1139:SRODOO>2.0.CO;2.

Collins, M. J., Nielsen–Marsh, C. M.,Hiller, J.,Smith, C. I., Roberts, J. P.,Prigodich, R. V.,Wess, T. J., &Turner–Walker, G. (2002). The Survival of organic matter in bone: A review. Archaeometry, 44(3), 383-394. doi: 10.1111/1475-4754.t01-1-00071.

Davies, K. L. (1987). Duck-Bill dinosaurs (Hadrosauridae, Ornithischia) from the North Slope of Alaska. J Paleontol., 61(1), 198-200. doi: 10.1017/S0022336000028341.

Davis, M. (2014). Census of dinosaur skin reveals lithology may not be the most important factor in increased preservation of hadrosaurid skin. Acta Palaeontol. Pol., 59(3), 601-605. doi: 10.4202/app.2012.0077.

DeMasa, J. M., & Boudreaux, E. (2015). Dinosaur Peptide Preservation and Degradation. Crs Q., 51(4), 268-285.

Dobberstein, R. C., et al. (2009). Archaeological collagen: why worry about collagen diagenesis? Archaeolog Anthropological Sci., 1(1), 31-42. doi: 10.1038/252063a0.

Edwards, N. P., Barden, H. E., van Dongen, B. E., Manning, P. L., Larson, P. L., Bergmann, U., Sellers, W. I., &Wogelius, R. A. (2011). Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin. ProcBiolSci., 278(1722), 3209-3218. doi: 10.1098/rspb.2011.0135.

Edwards, N. P., Manning, P. L., &Wogelius, R. A. (2014). Pigmentsthrough time. Pigment Cell Melanoma Res., 27(5), 684-5.doi: 10.1111/pcmr.12271.

Eglinton, G., & Logan, G. A. (1991). Molecular preservation. Philos Trans R Soc Lond B Biol Sci., 333(1268), 315-328. doi: 10.1098/rstb.1991.0081.

Ehrlich, H., Rigby, J. K., Botting, J. P., Tsurkan, M. V., Werner, C., Schwille, P., Petrášek, Z., & Geisler, T. (2013). Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep., 3, 3497. doi: 10.1038/srep03497.

Elder, R. L., & Smith, G. R. (1988). Fish taphonomy and environmental inference in paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62(1-4), 577-592. doi: 10.1016/0031-0182(88)90072-7.

Embery, G., Milner, A., Waddington, R. J., Hall, R. C., Langley, M. S., & Milan, A. M. (2000). The Isolation and Detection of Non-Collagenous Proteins from the Compact Bone of the Dinosaur Iguanodon. Connect Tissue Res., 41(3), 249-59. doi: 10.3109/03008200009005293.

Fabbri, M., Wiemann, J., Manucci, F., & Briggs, D. E. G. (2020). Three‐dimensional soft tissue preservation revealed in the skin of a non‐avian dinosaur. Palaeontology, 63(2), 185-193. doi: 10.1111/pala.12470.

Fernandes, I. (2020). Processos de preservação de fósseis de vertebrados quaternários coletados em cavernas carbonáticas de Minas Gerais e Bahia. (Monografia de Graduação em Engenharia Geológica). Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, MG.

Gobbo, S. R., & Bertini, R. (2015). Tecidos moles (não resistentes): como se fossilizam? Terrae Didatica, 10(1), 2-13. doi: 10.20396/td.v10i1.8637374.

Greshko, M. (2020). Hints of fossil DNA discovered in dinosaur skull. National Geographic. Disponível em: https://www.nationalgeographic.com/science/2020/03/hints-of-dna-discovered-in-a-dinosaur-fossil/.

Gurley, L. R., Valdez, J. G., Spall, W. D., Smith, B. F., & Gillette, D. D. (1991). Proteins in the fossil bone of the dinosaur, Seismosaurus. J Protein Chem., 10(1), 75-90. doi: 10.1007/BF01024658.

International Commission on Stratigraphy, ICS. (v2020/01). International Chronostratigraphic Chart. IUGS. Disponível em: http://www.stratigraphy.org/ICSchart/ChronostratChart2020-01.jpg. Acesso em: 09. 05. 2020.

Isaacs, W. A., Little, K., Currey, J. D., & Tarlo, L. B. (1963). Collagen and a cellulose-like substance in fossil dentine and bone. Nature, 197, 192. doi: 10.1038/197192a0.

Johnson, K. R., Nichols, D. J., & Hartman, J. H. (2002). Hell Creek Formation: A 2001 synthesis. In: Johnson, K. R., Nichols, D. J., &Hartman, J. H. (Eds.). 2002. The Hell Creek formation and the cretaceous-tertiary boundary in the Northern Great Plains. Geol Soc Am Spec Pap., 361, 503-510. doi: 10.1130/0-8137-2361-2.503.

Kaye, T. G., Gaugler, G., & Sawlowicz, Z. (2008). Dinosaurian soft tissues interpreted as bac¬terial biofilms. PLoS One. 2008; 3(7), e2808. doi: 10.1371/journal.pone.0002808.

Kielan-Jaworowska, Z. (1966). Third (1965) Polish-Mongolian Pal aeontological Expedition to the Gobi De sert and Western Mongolia. Bull. Acad. Pol. Sci., 14(4), 249-252.

Kleeman, E. (2006). Fresh Meat: T. rex Bone Yields Solft Tissue But No DNA. Discover magazine, 27(1), 37.

Lee, Y. C., Chiang, C. C., Huang, P. Y., Chung, C. Y., Huang, T. D., Wang, C. C., Chen, C. I., & Reisz, R. R. (2017). Evidence of preserved collagen in an early jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nat Commun., 31(8), 14220.doi: 10.1038/ncomms14220.

Liang, R., et al. (2020). Genome-centric resolution of novel microbial lineages in an excavated Centrosaurus dinosaur fossil bone from the Late Cretaceous of North America. Environmental Microbiome, 15, 8. doi:10.1186/s40793-020-00355-w.

Lindqvist, C., Schuster, S. C., Sun, Y., Talbot, S. L., Qi, J., Ratan, A., Tomsho, L. P., & Wiig, O. (2010). Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear. Proc Natl Acad Sci USA., 107(11), 6118-6123.doi: 10.1073/pnas.0914266107.

Lingham-Soliar, T., & Plodowski, G. (2010). The integument of Psittacosaurus from Liaoning Province, China: taphonomy, epidermal patterns and color of a ceratopsian dinosaur. Naturwissenschaften, 97(5), 479-486.doi: 10.1007/s00114-010-0661-3.

Manning, P. L., Morris, P. M., McMahon, A., Jones, E., Gize, A., Macquaker, J. H., Wolff, G., & Wogelius, R. A. (2009). Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proc Biol Sci., 276(1672), 3429-3437. doi: 10.1098/rspb.2009.0812.

Martill, D. M. (1991). Organically preserved dinosaur skin: taphonomic and biological implications. Modern Geology, 16, 61-68.

Martill, D. M., Batten, D. J., & Loydell, D. K. (2000). A new specimen of the thyreophoran dinosaur cf. Scelidosaurus with soft tissue preservation. Palaeontology, 43(3), 549-559. doi: 10.1111/j.0031-0239.2000.00139.x.

McNamara, M. E., Orr, P. J., Kearns, S. L., Alcalá, L., Anadón, P., & Peñalver-Mollá, E. (2006). High-fidelity organic preservation of bone marrow in ca 10 Ma amphibians. Geology, 34(8), 641-644. doi: 10.1130/G22526.1.

McNamara, M., Orr, P. J., Kearns, S. L., Alcalá, L., Anadón, P., & Peñalver-Mollá, E. (2010). Organic preservation of fossil musculature with ultracellular detail. Proc Biol Sci., 277(1680), 423-427.doi: 10.1098/rspb.2009.1378.

McNamara, M. E., Zhang, F., Kearns, S. L., Orr, P. J., Toulouse, A., Foley, T., Hone, D. W. E., & Zhou, Z. (2018). Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds. Nat Commun., 9(1), 2072.doi: 10.1038/s41467-018-04443-x.

Miller, M. F. 2nd., & Wyckoff, R. W. (1968). Proteins in dinosaur bones. Proc Natl Acad Sci U S A., 60(1), 176-178. doi: 10.1073/pnas.60.1.176.

Moczydłowska, M., Westall, F., & Foucher, F. (2014). Microstructure and Biogeochemistry of the organically preserved ediacaran metazoan sabellidites. J Paleontol., 88(2), 224-239. doi: 10.1666/13-003.

Moyer, A. E., Zheng, W., & Schweitzer, M. H. (2016). Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae. Proc Biol Sci., 283(1842), pii: 20161997. doi: 10.1098/rspb.2016.1997.

Muyzer, G., Sandberg, P., Knapen, M. H. J., Vermeer, C., Collins, M., & Westbroek, P. (1992). Preservation of boné protein osteocalcin in dinosaurs. Geology, 20(10), 871-874. doi: 10.1130/0091-7613(1992)020<0871:POTBPO>2.3.CO;2.

Nielsen-Marsh, C. (2002). Biomolecules in fossil remains: Multidisciplinary approach to endurance. The Biochemist, 24(3), 12-14. doi: 10.1042/BIO02403012.

Organ, C. L., Schweitzer, M. H., Zheng, W., Freimark, L. M., Cantley, L. C., & Asara, J. M. (2008). Molecular phylogenetics of mastodon and Tyrannosaurus rex. Science, 320(5875), 499.doi: 10.1126/science.1154284.

Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., … Willerslev, E. (2013). Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499(7456), 74-78.doi: 10.1038/nature12323.

Ostrom, P. H., Macko, S. A., Engel, M. H., Silfer, J. A., & Russell, D. (1990). Geochemical characterization of high molecular weight material isolated from late cretaceous fossils. Organic Geochemistry, 16(4–6), 1139-1144. doi: 10.1016/0146-6380(90)90149-T.

Ostrom, P. H., Macko, S. A., Engel, M. H., & Russell, D. (1993). Assessment of trophic structure of Cretaceous communities based on stable nitrogen isotope analyses. Geology, 21(6), 491-494. doi: 10.1130/0091-7613(1993)021<0491:AOTSOC>2.3.CO;2.

Parry, L. A., Smithwick, F., Nordén, K. K., Saitta, E. T., Lozano-Fernandez, J., Tanner, A. R. , Caron, J. B., & Vinther, J. (2018). Soft-Bodied Fossils Are Not Simply Rotten Carcasses - Toward a Holistic Understanding of Exceptional Fossil Preservation: Exceptional Fossil Preservation Is Complex and Involves the Interplay of Numerous Biological and Geological Processes. Bioessays, 40(1), 1700167.doi: 10.1002/bies.201700167.

Pawlicki, R., Dkorbel, A., & Kubiak, H. (1966). Cells, collagen fibrils and vessels in dinosaur bone. Nature, 211(5049), 655-657. doi: 10.1038/211655a0.

Pawlicki, R., & Nowogrodzka-Zagorska, M. (1998). Blood vessels and red blood cells preserved in dinosaur bones. Ann Anat., 180(1), 73-77. doi: 10.1016/s0940-9602(98)80140-4.

Pawlicki, R. (1995). Histochemical demonstration of DNA in osteocytes from dinosaur bones. Folia HistochemCytobiol., 33(3), 183-186.

Pawlicki, R. (1977). Histochemical reactions for mucopolysaccharides in the dinosaur bone. Studies on Epon- and methacrylate-embedded semithin sections as well as on isolated osteocytes and ground sections of bone. Acta Histochem., 58(1), 75-8. doi: 10.1016/S0065-1281(77)80110-4.

Pawlicki, R. (1985). Metabolic pathways of the fossil dinosaur bones. Part V. Morphological differentiation of osteocyte lacunae and boné canaliculi and their significance in the system of extracellular communication. Folia HistochemCytobiol., 23(3), 165-174.

Pevzner, P. A., Kim, S., & Ng, J. (2008). Comment on "Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry". Science, 321(5892), 1040. doi: 10.1126/science.1155006.

Raff, E. C., Schollaert, K. L., Nelson, D. E., Donoghue, P. C., Thomas, C. W., Turner, F. R., Stein, B. D., & Raff, R. A. (2008). Embryo fossilizaiton is a biological process mediated by microbial biofilm. Proc. Natl Acad. Sci. USA, 105(49), 19360-5.doi: 10.1073/pnas.0810106105.

Reisz, R. R., Huang, T. D., Roberts, E. M., Peng, S., Sullivan, C., Stein, K., LeBlanc, A. R., & Zhong, S. (2013). Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains. Nature, 496(7444), 210-214.doi: 10.1038/nature11978.

Saitta, E. T., Liang, R., Lau, M. C., Brown, C. M., Longrich, N. R., Kaye, T. G., Novak, B. J., & Onstott, T. (2019). Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife, 8, e46205.doi: 10.7554/eLife.46205.

San Antonio, J. D., Schweitzer, M. H., Jensen, S. T., Kalluri, R., Buckley, M., & Orgel, J. P. (2011). Dinosaur peptides suggest mechanisms of protein survival. PLoS One, 6(6), e20381.doi: 10.1371/journal.pone.0020381.

Schroeter, E. R., DeHart, C. J., Cleland, T. P., Zheng, W., Thomas, P. M., Kelleher, N. L., Bern, M., & Schweitzer, M. H. (2017). Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of cretaceous protein. J Proteome Res., 16(2), 920-932. doi: 10.1021/acs.jproteome.6b00873.

Schweitzer, M. H., Marshall, M., Carron, K., Bohle, D. S., Busse, S. C., Arnold, E. V., Barnard, D., & Starkey, J. R. (1997a). Heme compounds in dinosaur trabecular bone. Proc Natl Acad Sci U S A, 94(12), 6291-6296. doi: 10.1073/pnas.94.12.6291.

Schweitzer, M. H., Johnson, C., Zocco, T. G., Horner, J. R., & Starkey, J. R. (1997b). Preservation of biomolecules in cancellous bone of Tyrannosaurus rex. J. Vertebr. Paleontol., 17(2), 349-359. doi: 10.1080/02724634.1997.10010979.

Schweitzer, M. H., & Horner, J. R. (1999). Intravascular microstructures in trabecular bone tissues of Tyrannosaurus rex. Ann. Paléontol., 85(3), 179-192. doi: 10.1016/S0753-3969(99)80013-5.

Schweitzer, M. H., Watt, J. A., Avci, R., Knapp, L., Chiappe, L., Norell, M., & Marshall, M. (1999). Beta-keratin specific immunological reactivity in feather-like structures of the cretaceous alvarezsaurid, Shuvuuia deserti. J Exp Zool., 285(2), 146–157. doi: 10.1002/(sici)1097-010x(19990815)285:2<146::aid-jez7>3.0.co;2-a.

Schweitzer, M. H., Wittmeyer, J. L., Horner, J. R., & Toporski, J. K. (2005a). Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science, 307(5717), 1952-1955. doi: 10.1126/science.1108397.

Schweitzer, M. H., Chiappe, L., Garrido, A. C., Lowenstein, J. M., & Pincus, S. H. (2005b). Molecular preservation in late cretaceous sauropod dinosaur eggshells. Proc Biol Sci., 272(1565), 775-784. doi: 10.1098/rspb.2004.2876.

Schweitzer, M. H., &Wittmeyer,J. L. (2006). Dinosaurian soft tissue taphonomy and implications. In: AAAS Annual meeting, Abstracts with Programs, St. Louis, Missouri, USA, 16-20 Feb.

Schweitzer, M. H., Suo, Z., Avci, R., Asara, J. M., Allen, M. A., Arce, F. T., & Horner, J. R. (2007a). Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science, 316(5822), 277-280. doi: 10.1126/science.1138709.

Schweitzer, M. H., Wittmeyer, J. L., & Horner, J. R. (2007b). Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc Biol Sci., 274(1607), 183-197. doi: 10.1098/rspb.2006.3705.

Schweitzer, M. H., Zheng, W., Organ, C. L., Avci, R., Suo, Z., Freimark, L. M., Lebleu, V. S., & Asara, J. M. (2009). Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science, 324(5927), 626-631. doi: 10.1126/science.1165069.

Schweitzer, M. H. (2011). Soft tissue preservation in terrestrial Mesozoic vertebrates. Annu. Rev. Earth Planet. Sci. 2011; 39, 187-216. doi: 10.1146/annurev-earth-040610-133502.

Schweitzer, M. H., Zheng, W., Cleland, T. P., & Bern, M. (2013). Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone, 52(1), 414-23. doi: 10.1016/j.bone.2012.10.010.

Schweitzer, M. H., Zheng, W., Cleland, T. P., Goodwin, M. B., Boatman, E., Theil, E., Marcus, M. A., & Fakra, S. C. (2014). A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc Biol Sci., 281(1775), 20132741.doi: 10.1098/rspb.2013.2741.

Schweitzer, M. H., Moyer, A. E., & Zheng, W. (2016). Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone. PLoS One, 11(2), e0150238.doi: 10.1371/journal.pone.0150238.

Schweitzer, M. H., Schroeter, E. R., Cleland, T. P., & Zheng, W. (2019). Paleoproteomics of Mesozoic Dinosaurs and Other Mesozoic Fossils. Proteomics, 19(16), 1800251.doi: 10.1002/pmic.201800251.

Smith, C. I., Chamberlain, A. T., Riley, M. S., Cooper, A., Stringer, C. B., & Collins, M. J. (2001). Neanderthal DNA: Not just old but old and cold? Nature, 410(6830), 771-772.doi: 10.1038/35071177.

Sykes, B. (1991). The past comes alive. Nature, 352(6334), 381-2. doi: 10.1038/352381a0.

Thomas, B., &Enyart, B. (2020). List of Biomaterial Fossil Papers. Disponível em: https://docs.google.com/spreadsheets/d/1eXtKzjWP2B1FMDVrsJ_992ITFK8H3LXfPFNM1ll-Yiw/edit#gid=0.

Thomas, B., & Taylor, S. (2019). Proteomes of the past: the pursuit of proteins in Paleontology. Expert Review of Proteomics, 16(11-12), 881-895. doi: 10.1080/14789450.2019.1700114.

Thomas, B. (2013). A Review of Original Tissue Fossils and Their Age Implications. In: Proceedings of the Seventh International Conference. Pittsburgh, PA: Science Fellowship.

Thomas, B. (2018). Collagen remnants in ancient bone. (Tese de Doutorado). University of Liverpool, Liverpool, UK.

Towe, K. M., & Urbanek, A. (1972). Collagen-like Structures in Ordovician Graptolite Periderm. Nature, 237, 443. doi: 10.1038 / 237443a0.

Trinajstic, K., Marshall, C., Long, J., & Bifield, K. (2007). Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biol Lett., 3(2), 197-200. doi: 10.1098/rsbl.2006.0604.

Ullmann, P. V., Pandya, S. H., & Nellermoe, R. (2019). Patterns of soft tissue and cellular preservation in relation to fossil bone tissue structure and overburden depth at the standing rock hadrosaur site, maastrichtian hell creek formation, South Dakota, USA. Cretaceous Research, 99, 1-13. doi: 10.1016/j.cretres.2019.02.012.

van der Reest, A. J., & Currie, P. J. (2020). Preservation frequency of tissue-like structures in vertebrate remains from the upper Campanian of Alberta: Dinosaur Park Formation. Cretaceous Research, 109, 104370. doi: 10.1016/j.cretres.2019.104370.

Vinther, J., Nicholls, R., Lautenschlager, S., Pittman, M., Kaye, T. G., Rayfield, E., Mayr, G., & Cuthill, I. C. (2016). 3D camouflage in na ornithischian dinosaur. Curr Biol., 26(18), 2456-2462. doi: 10.1016/j.cub.2016.06.065.

Voss-Foucart, M. F. (1968). Paleoproteins of fossil shells of dinosaur eggs from upper cretaceous deposits of provence. Comp Biochem Physiol., 24(1), 31-36. doi: 10.1016/0010-406x(68)90954-7.

Xing, L., O’Connor, J. K., Schmitz, L., Chiappe, L. M., McKellar, R. C., Yi, Q., & Li, G. (2020). Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature, 579, 245–249. doi: 10.1038/s41586-020-2068-4.

Wadsworth, C., & Buckley, M. (2014). Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun Mass Spectrom., 28(6), 605-15. doi: 10.1002/rcm.6821.

Wiemann, J., Yang, T. R., Sander, P. N., Schneider, M., Engeser, M., Kath-Schorr, S., Müller, C. E., & Sander, P. M. (2017). Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ., 5, e3706. doi: 10.7717/peerj.3706.

Wiemann, J., Fabbri, M., Yang, T. R., Stein, K., Sander, P. M., Norell, M. A., & Briggs, D. E. G. (2018). Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat Commun., 9(1), 4741.doi: 10.1038/s41467-018-07013-3.

Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., & Hofreiter, M. (2007). Ancient biomolecules from deep ice cores reveal a forested Southern Greenland. Science, 317(5834), 111-114.doi: 10.1126/science.1141758.

Wyckoff, R. W., & Davidson, F. D. (1976). Pleistocene and dinosaur gelatins. Comp BiochemPhysiol B., 55(1), 95-97.doi: 10.1016/0305-0491(76)90179-6.

Yamagata, K., Nagai, K., Miyamoto, H., Anzai, M., Kato, H., Miyamoto, K., Kurosaka, ..., & Iritani, A. (2019). Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging. Sci Rep., 9, 4050. doi: 10.1038/s41598-019-40546-1.

Zhang, F., Kearns, S. L., Orr, P. J., Benton, M. J., Zhou, Z., Johnson, D., Xu, X., & Wang, X. (2010). Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature, 463(7284), 1075-1078.doi: 10.1038/nature08740.

Zhu, M., Babcock, L. E., & Steiner, M. (2005). Fossilization modes in the Chengjiang Lagerstatte (Cambrian of China): testing the roles of organic preservation and diageneticalteration in exceptional preservation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 220(1-2), 31-46.doi: 10.1016/j.palaeo.2003.03.001.

Zimmer, C. (2008). Is dinosaur 'soft tissue' really slime? Science, 321(5889), 623. doi: 10.1126/science.321.5889.623a.

Zylberberg, L., & Laurin, M. (2011). Analysis of fossil bone organic matrix by transmission electron microscopy. Comptes Rendus Palevol., 10(5-6), 357-366. doi: 10.1016/j.crpv.2011.04.004.

Publicado

2020-06-19

Como Citar

ALVES, E. F.; MACHADO, M. F. . Perspectivas atuais sobre tecidos moles não mineralizados em fósseis de dinossauros não avianos. Terrae Didatica, Campinas, SP, v. 16, p. e020028, 2020. DOI: 10.20396/td.v16i0.8659539. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8659539. Acesso em: 26 nov. 2020.

Edição

Seção

Revisão