Paleotemperatura

os principais proxies baseados em foraminíferos planctônicos

Autores

DOI:

https://doi.org/10.20396/td.v17i00.8667166

Palavras-chave:

Razão Mg/Ca, Isótopos, Oxigênio 18, Proxy

Resumo

Este artigo é uma síntese sobre os principais proxies de paleotemperatura baseados nas carapaças de foraminíferos planctônicos: δ18O, razão Mg/Ca e funções de transferência. Estes organismos unicelulares surgiram no Jurássico. São marinhos, eucariontes, heterótrofos, de hábito planctônico e podem ou não ser portadores de simbiontes fotossintetizantes. Os foraminíferos planctônicos secretam uma carapaça ao longo da vida, composta de calcita; durante sua síntese são incorporados elementos/assinaturas químicas presentes no ambiente, carregando consigo sinais ambientais relacionados às mudanças climáticas, pH e salinidade. As testas têm um excelente potencial de preservação no assoalho oceânico. O uso desses microfósseis, encontrados no registro sedimentar, cria um leque de possibilidades na obtenção de dados paleoceanográficos de várias zonas oceânicas, como o uso em proxies geoquímicos (δ18O, razão Mg/Ca) e nas funções de transferência. A aplicabilidade desses proxies, como também fatores bióticos e abióticos que podem influenciar as estimativas finais, são abordados na revisão.

Downloads

Não há dados estatísticos.

Biografia do Autor

Tamires Nunes Zardin, Universidade do Vale do Rio dos Sinos

Graduada em Ciências Biológicas e mestranda em Geologia Sedimentar, linha de pesquisa em Paleontologia, pela Universidade do Vale do Rio dos Sinos (Unisinos).

Referências

Anand, P., & Elderfield, H. (2005). Variability of Mg/Ca and Sr/Ca between and within the planktonic foraminifers Globigerina bulloides and Globorotalia truncatulinoides. Geochemistry, Geophysics, and Geosystems, 6 (11), 1-15. doi: 10.1029/2004GC000811.

Anand, P., Elderfield, H., & Conte, M. H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time-series. Paleoceanography, 18(2), 1050. doi:10.1029/2002PA000846.

Anderson, D. M., & Archer, D. (2002). Glacial-interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature, 416, 70-73.

Anjos-Zerfass, G. S., & Andrade, E. J. (2008). Foraminíferos e Bioestratigrafia: uma abordagem didática. Terræ Didatica, 3(1), 18-35. doi: 10.20396/td.v3i1.8637474.

Barker, S., & Elderfield, H. (2002). Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science, 297, 833-836.

Bassinot, F. C., Melieres, F., & Labeyrie, L. (2004). Crystallinity of foraminifera shells: A proxy to reconstruct past bottom water CO3 changes? Geochemistry, Geophysics, and Geosystems, 5(8), 12. doi:10.1029/2003GC000668.

Bè, A. W. H. (1977). An ecological, oceanographic, and taxonomic review of Recent planktonic foraminifera. In: Ramsay, A. T. S. (ed.), Oceanic Micropaleontology: Academic Press, London, 1-100.

Benway, H. M., Haley, B. A., Klinkhammer, G. P., & Mix, A. C. (2003). Adaptation of a flowthrough leaching procedure for Mg/Ca palaeothermometry. Geochemistry, Geophysics, and Geosystems, 4(2), 1-15.

Berger, W. H. (1970). Planktonic foraminifera: Selective solution and the lysocline. Marine Geology, 8, 111-138.

Bijma, J., Spero, H.J., & Lea, D.W. (1999). Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer. p. 489-512.

Billups, K., & Spero, H.J. (1995). Relationship between shell size, thickness and stable isotopes in individual planktonic Foraminifera from two equatorial Atlantic cores. J foraminifer Res, 25, 24-37.

Boltovskoy, E. (1965). Los Foraminiferos Recientes. Buenos Aires: Eudeba. 510 p.

Broecker, W. S. (2002). The glacial world according to Wally. New York, Eldigo Press. 358 p.

Broecker, W. S., & Peng, T.-H. (1982). Tracers in the Sea. Palisades, NY, Eldigio Press, Lamont Doherty Geological Observatory. 690p.

Brown, S. J., & Elderfield, H. (1996). Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by post depositional dissolution: Evidence of shallow Mg-dependent dissolution. Paleoceanography, 11, 543-551.

Burke, J., Renema, W., Henehan, M. J., Elder, L. E., Davis, C. V., Maas, A. E., Foster, G. L., Schiebel, R., & Hull, P. M. (2018). Factors influencing porosity in planktonic foraminifera, Pangaea, doi: 10.1594/PANGAEA.890092.

Burman, J., Gustafsson, O., Segl, M., & Schmitz, B. (2005). A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates. Rapid Communications in Mass Spectrometry, 19, 3086-3088.

CLIMAP Project Members (1976). The surface of the ice-age Earth. Science, 191, 1131-1137.

Curry, W. B., & Marchitto, T. M. (2005). A SIMS calibration of benthic foraminiferal Mg/Ca. EOS, Transactions, of American Geophysical Union, Fall Meeting, 86(52), PP51A-0583.

De Villiers, S., Greaves, M., & Elderfield, H. (2002). An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-OES. Geochemistry, Geophysics, and Geosystems, 3, 1-14.

Dekens, P. S., Lea, D.W., Pak, D. K., & Spero, H. J. (2002). Core top calibration of Mg/Ca in tropical foraminifera: Refining paleo-temperature estimation. Geochemistry, Geophysics, and Geosystems, 3(4), 1-29.

Dissard, D., Reichart, G. J., Menkes, C., Mangeas, M., Frickenhaus, S., & Bijma, J. (2020). Mg/Ca, Sr/Ca and stable isotope from planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleo-temperature and paleo-salinity. Biogeosciences Discuss., 1-38. doi: 10.5194/bg-2020-208.

Duplessy, J.C., Bé, A.W.H., & Blanc, P.L. (1981). Oxygen and carbon isotopic composition and biogeographic distribution of planktonic Foraminifera in the Indian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 33, 9-46.

Eggins, S., De Deckker, P., & Marshall, J. (2003). Mg/Ca variation in planktonic foraminifera tests: Implications for reconstructing palaeo-seawater temperature and habitat migration. Earth Planetary Science Letters, 212, 291-306.

Eggins, S.M., Sadekov, A., & De Deckker, P. (2004). Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: a complication for seawater thermometry? Earth Planet. Sci. Lett., 225, 411-419. doi: 10.1016%2Fj.epsl.2004.06.019

Elderfield, H., & Ganssen, G. (2000). Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405, 442-445.

Elderfield, H., Vautravers, M., & Cooper, M. (2002). The relationship between shell size and Mg/Ca, Sr/Ca, δ 18O, and δ 13C of species of planktonic foraminifera. Geochem. Geophys. Geosyst. 3., 1-13. doi: 10.1029/2001GC000194

Emiliani, C. (1955). Pleistocene temperatures. Journal of Geology, 63, 538-578.

Epstein, S., Buchsbaum, R., Lowenstam, H.A., & Urey, H.C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64,1315-1325.

Epstein, S., Mayeda, T. (1953). Variation of O-18 content of water from natural sources. Geochimica et Cosmochimica Acta, 4, 213-224.

Ericson, D. B., & Wollin, G. (1968). Pleistocene climates and chronology in deep-sea sediments. Science, 162,1227,1-34.

Ezard, T.H.G., Edgar, K.M., & Hull, P.M. (2015). Environmental and biological controls on size-specific δ 13C and δ 18O in recent planktonic Foraminifera. Paleoceanography, 30, 151-173. doi: 10.1002/2014PA002735

Faure, G. (1986). Principles of isotope geology. John Wiley & Sons, New York, NY. 589p.

Friedrich, O., Schiebel, R., Wilson, P.A., Weldeab, S., Beer, C.J., Cooper, M.J., & Fiebig, J. (2012). Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifers. Earth Planet Sci. Letters, 319-320,133-145. doi: 10.1016/j.epsl.2011.12.002.

Furbish, D. J., & Arnold, A. J. (1997). Hydrodynamic strategies in the morphological evolution of spinose planktonic foraminifera. Geological Society of America Bulletin, 109, 1055-1072.

Gradstein, F., Ogg, J., Schmitz, M., & Ogg, G. (2012). The Geologic Time Scale. v. 2, 5.ed. Elsevier, Oxford, UK, 1176 p.

Greaves, M., Caillon, N., et al. (2008). Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry, Geophyics, Geosystems, v. 9, Q08010, 1-27. doi: 10.1029/2008GC001974

Guiot J., & De Vernal A. (2007). Transfer functions: methods for qualitative paleoceanography based on microfossils. In: C. Hillarie-Marcel & A. De Vernal. eds. (2007). Proxies in Late Cenozoic Paleoceanography. Elsevier. p. 523-562. (Developments in Marine Geology, v. 1).

Guiot, J. (2011). Transfer functions. IOP Conference Series: Earth and Environmental. Science, 14, 012008, 1-7. doi: 10.1088/1755-1315/14/1/012008/

Hale, W., & Pflaumann, U. (1999). Sea-Surface Temperature Estimations Using a Modern Analog Technique with Foraminiferal Assemblages from Western Atlantic Quaternary Sediments. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer.

Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., & Rohling, E. J. (2005). Glacial Mediterranean Sea surface temperatures based on planktonic foraminiferal assemblages. Quaternary Science Reviews, 24, 999-1016.

Hemleben, C., Spindler, M., & Anderson, O. R. (1989). Modern planktonic foraminifera. New York, NY, Springer-Verlag. 363p.

Hillaire-Marcel C., de Vernal A., Polyak L., & Darby D. (2004). Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sediments-implications for the Holocene paleoceanography of the western Arctic. Quat Sci Rev, 23, 245-260.

Hillaire-Marcel, C., de Vernal, A. (2007). Methods in Late Cenozoic Paleoceanography: Introduction. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1, Developments in Marine Geology. Amsterdam, Boston Elsevier, 1-15.

Holbourn, A.E., Kuhnt, W., Clemens, S.C., Kochhann, K. G. D., Jöhnck, J., Lübbers, J., & Andersen, N. (2018). Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications, 9, 1584, 1-13. doi: 10.1038/s41467-018-03950-1

Hsiang, A.Y., Elder, L.E., & Hull, P.M. (2016). Towards a morphological metric of assemblage dynamics in the fossil record: a test case using planktonic foraminifera. Philosophical Transactions B, 371, 1-24. doi: 10.1098/rstb.2015.0227

Huang, K.-F., You, C.-F., Lin, H.-L., & Shieh, Y.-T. (2008). In situ calibration of Mg/Ca ratio in planktonic foraminiferal shell using time series sediment trap: a case study of intense dissolution artifact in the South China Sea. Geochemistry, Geophysics, Geosystems, 9, 1-20. doi: 10.1029/2007GC001660.

Hut, G. (1987). Consultants' group meeting on stable isotope reference samples for geochemical and hydrological investigations. International Atomic Energy Agency, 18, 1-42.

Hutson, W. H. (1980). The Agulhas Current During the Late Pleistocene: Analysis of Modern Faunal Analogs. Science, 207 (4426), 64-66. doi: 10.1126/science.207.4426.64.

Imbrie, J., & Kipp, N. G. (1971). A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In: Turekian, K. K. (1971). The Late Cenozoic Glacial Ages. New Haven, Yale University Press. p. 71-181.

Ivanova, E., Schiebel, R., Singh, A. D., Schmiedl, G., Niebler, H.-S., & Hemleben, C. (2003). Primary production in the Arabian Sea during the last 135,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 197, 61-82. doi: 10.1016/S0031-0182(03)00386-9.

Katz, M. E., Cramer, B. S., Franzese, A., Honisch, B., Miller, K. G., Rosenthal, Y., & Wright, J. D. (2010). Traditional and emerging geochemical proxies in foraminifera. The Journal of Foraminiferal Research, 40 (2), 165-192. doi: 10.2113/gsjfr.40.2.165

Kisakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D., & Erez, J. (2008). Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett, 273, 260-269.

Köhler-Rink, S., & Kühl, M. (2005). The chemical microenvironment of the symbiotic planktonic foraminifer Orbulina universa. Marine Biology Research, 1, 68-78. doi: 10.1080/17451000510019015.

Kucera, M. (2007). Planktonic Foraminifera as Tracers of Past Oceanic Environments. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1, Developments in Marine Geology. Amsterdam, Boston Elsevier, 213-262. doi: 10.1016/S1572-5480(07)01011-1.

Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., & Waelbroeck, C. (2005). Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration datasets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews, 24, 951-998. doi: 10.1016/j.quascirev.2004.07.014

Langen, P. J. v., Pak, D. K., Spero, H. J., & Lea, D. W. (2005). Effects of temperature on Mg/Ca in neogloboquadrinid shells determined by live culturing. Geochemistry, Geophysics, and Geosystems, 6, 1-11. doi: 10.1029/2005GC000989

Lea, D. W. (1999). Trace elements in foraminiferal calcite. In: Sen Gupta, B. K. (Ed.) (1999). Modern Foraminifera. Dordrecht, Klüwer Academic Publ. p. 259-277. doi: 10.1007/0-306-48104-9_15

Lea D. W. (2003). Elemental and isotopic proxies of past ocean temperatures. In: Holland, H. D., Turekian, K. K. (Eds.) Treatise on geochemistry. Elsevier-Pergamon, Oxford, p 365-390

Lea, D. W., & Martin, P. A. (1996). A rapid mass spectrometric method for the analysis of barium, cadmium, and strontium in foraminifera shells. Geochimica et Cosmochimica Acta, 60, 3143-3149.

Lea, D. W., Bijma, J., Spero, H. J., & Archer, D. (1999). Implications of a Carbonate Ion Effect on Shell Carbon and Oxygen Isotopes for Glacial Ocean Conditions. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer.

Lea, D. W., Martin, P., Chan, D.A., & Spero, H.J. (1995). Calcium uptake and calcification rate in the planktonic foraminifer Orbulina universa. Journal of Foraminifera Research, 25, 14-23.

Lisiecki L.E., & Raymo M., E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, 1-17. doi: 10.1029/2004PA001071

Lisiecki, L. E., & Stern, J. V. (2016). Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanography, 31, 1368-1394. doi: 10.1002/2016PA003002

Lombard, F., Erez, J., Michel, E., & Labeyrie, L. (2010). Temperature effect on respiration and photosynthesis of the symbiont-bearing planktonic Foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera. Limnol. Oceanogr., 54, 210-218.

McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18, 849-857.

McKenna, V. M., & Prell, W. L. (2005). Calibration of the Mg/Ca of Globorotalia truncatulinoides (R) for the reconstruction of marine temperature gradients. Paleoceanography, 19, 1-12. doi: 10.1029/2000PA000604

Morey, A. E., Mix, A. C., & Pisias, N. G. (2005). Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environmental variables. Quaternary Science Reviews, 24, 925-950.

Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., & Wefer, G. (2003). Temperature: Delta O-18 relationships of planktonic foraminifera collected from surface waters. Palaeogeography, Palaeoclimatology, Palaeoecology, 202, 143-152. doi: 10.1016/S0031-0182(03)00633-3.

Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., & Stefan Niebler, H., 1997. Planktonic foraminifera as recorders of past surface-water stratification. Geology, 25(4), 335-338. doi: 10.1130/0091-7613(1997)025%3C0335:PFAROP%3E2.3.CO;2

Niebler, H. S., Hubberten, H. W., & Gersonde, R. (1999). Oxygen Isotope Values of Planktic Foraminifera: A Tool for the Reconstruction of Surface Water Stratification. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer.

Nürnberg, D., Bijma, J., & Hemleben, C. (1996). Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature: Geochimica et Cosmochimica Acta, 60, 803-814.

Paul A., Mulitza S., Pätzold J., & Wolff T. (1999). Simulation of Oxygen Isotopes in a Global Ocean Model. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer. doi: 10.1007/978-3-642-58646-0_27

Peterson, L. C., & Prell, W. L. (1985). Carbonate dissolution in recent sediments of the Eastern Equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline. Marine Geology, 64, 259-290.

Ravelo, A., & Hillaire-Marcel, C. (2007). Chapter Eighteen: The Use of Oxygen and Carbon Isotopes of Foraminifera in Paleoceanography. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1. Developments in Marine Geology. 1. doi: 10.1016/S1572-5480(07)01023-8

Regenberg, M., Steph, S., Nürnberg, D., Tiedemann, R., & Garbe-Schönberg, D. (2009). Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ18O-calcification temperatures: Paleothermometry for the upper water column. Earth and Planetary Science Letters, 278 (3-4), 324-336. doi: 10.1016/j.epsl.2008.12.019.

Rohling, E.J., & Cooke, S. (1999). Stable oxygen and carbon isotopes in foraminiferal carbonate shells. In: Sen Gupta, B. K. (Ed.) (1999). Modern Foraminifera. Dordrecht, Klüwer Academic Publ. p. 239-258.

Rosenthal, Y. (2007). Elemental Proxies for Reconstructing Cenozoic Seawater Paleotemperatures from Calcareous Fossils. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1, Developments in Marine Geology. Amsterdam, Boston Elsevier, 717-734.

Rosenthal, Y., & Boyle, E. A. (1993). Factors controlling the fluoride content of planktonic foraminifera: an evaluation of its paleoceanographic applicability. Geochimica et Cosmochimica Acta, 57, 335-346.

Russell, A. D., Hoenisch, B., Spero, H. J., & Lea, D. W. (2004). Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 68, 4347-4361.

Sachs, H. M., Webb, T., III, & Clark, D. R. (1977). Paleoecological transfer functions. Annual Review of Earth and Planetary Sciences, 5, 159-178.

Schiebel, R. (2002). Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles, 16, 1-21. doi: 10.1029/2001GB001459.

Schiebel, R., & Hemleben, C. (2005). Modern planktic foraminifera. Paläontologische Zeitschrift. 79(1), 135-148. doi: 10.1007/BF03021758.

Schiebel, R., & Hemleben, C. (2017). Planktic Foraminifers in the Modern Ocean. Berlin, Heidelberg, Springer-Verlag. 358p. doi: 10.1007/978-3-662-50297-6.

Schiebel, R., Hiller, B., & Hemleben, C. (1995). Impacts of storms on Recent planktic foraminiferal test production and CaCO3 flux in the North Atlantic at 47 degrees N, 20 degrees W (JGOFS). Marine Micropaleontology, 26, 115-129.

Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., & Thierstein, H. R. (2004). Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Marine Micropaleontology, 50, 319-338.

Schott, W. (1935). Die Foraminiferen in den Aquatorialen Teil des Atlantischen Ozeans. Dtsch. Atl. Exped. 3, 43-134.

Sen Gupta, B. K. (1999). Systematics of Modern Foraminifera. In: Sen Gupta, B. K. (Ed.) (1999). Modern Foraminifera. Dordrecht, Klüwer Academic Publ. p. 7-36.

Spero, H. J., Bijma, J., Lea, D. W., & Bemis, B. E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390, 497-500.

Spero, H.J., Eggins, S.M., Russell, A.D., Vetter, L., Kilburn, M.R., & Hönisch, B. (2015). Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer. Earth Planet. Sci. Letters, 409, 32-42. doi: 10.1016/j.epsl.2014.10.030.

Spero, H.J., Lea, D.W. (1996). Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Marine Micropaleontology, 28, 231-246.

Steinke, S., Chiu, H. -Y., Yu, P. -S., Shen, C. -C., Lowemark, L., Mii, H. -S., & Chen, M. -T. (2005). Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions. Geochemistry, Geophysics, and Geosystems, 6, 13. doi: 10.1029/2005GC000926.

Takahashi, K., & Bè, A. W. H. (1984). Planktonic foraminifera: Factors controlling sinking speeds. Deep Sea Research, 31, 1477-1500.

Thiede, J. (1978). A glacial Mediterranean. Nature, 276, 680-683.

Thunell, R. C., & Honjo, S. (1981). Calcite dissolution and the modification of planktic foraminiferal assemblages. Marine Micropaleontology, 6, 169-182.

Thunell, R.C. (1979). Eastern Mediterranean Sea during the last glacial maximum; an 18,000-years B.P. reconstruction. Quaternary Research, 11, 353-372.

Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562-581.

Wara, M. W., Delaney, M. L., Bullen, T. D., & Ravelo, A. C. (2003). Application of a radially viewed inductively coupled plasma-optical emission spectrophotometry to simultaneous measurement of Mg/Ca, Sr/Ca, and Mn/Ca ratios in marine biogenic carbonates. Geochemistry, Geophysics, and Geosystems, 4 (8), 1-14. doi: 10.1029/2003GC000525.

Yu, J., Day, J., Greaves, M., & Elderfield, H. (2005). Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochemistry, Geophysics, and Geosystems, 6(8), 9. doi: 10.1029/2005GC000964.

Zeebe, R.E., Bijma, J., & Wolf-Gladrow, D.A. (1999). A diffusion-reaction model of carbon isotope fractionation in Foraminifera. Marine Chemistry, 64, 199-227.

Downloads

Publicado

2021-12-03

Como Citar

ZARDIN, T. N. Paleotemperatura: os principais proxies baseados em foraminíferos planctônicos. Terræ Didatica, Campinas, SP, v. 17, n. 00, p. e021047, 2021. DOI: 10.20396/td.v17i00.8667166. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8667166. Acesso em: 28 nov. 2022.

Edição

Seção

Revisão