Banner Portal
Mudanças climáticas e o declínio das abelhas


Alterações ambientais

Como Citar

SANTOS, Juliana Brito; VIANA , Matheus Cavalcante; MARIANO, Cléa dos Santos Ferreira; MENEZES, Rodolpho Santos Telles de; NERY, Davi Galvão; BRANDÃO, Simone Nunes. Mudanças climáticas e o declínio das abelhas . Terrae Didatica, Campinas, SP, v. 18, n. 00, p. e022022, 2022. DOI: 10.20396/td.v18i00.8669210. Disponível em: Acesso em: 16 abr. 2024.


A Terra se mantém em constante transformação desde sua formação há 4,6 bilhões de anos; isso inclui mudanças no clima, na diversidade biológica e nos ecossistemas. Ações humanas, por meio de práticas insustentáveis, estão alterando os ciclos climáticos e os ecossistemas, causando mudanças rápidas no sistema Terra. O presente artigo aborda o impacto das mudanças climáticas atuais sobre as abelhas e suas graves consequências para as sociedades humanas. Começamos percorrendo a linha do tempo desde a evolução inicial das abelhas até os dias de hoje, discutindo as principais mudanças climáticas que ocorreram e relacionando tais eventos com a evolução das abelhas e das plantas com flores. Concluímos o artigo discutindo de que forma os efeitos indesejados das mudanças climáticas atuais, além de outros fatores, podem reduzir drasticamente populações de abelhas selvagens e manejadas, e comprometer a produção agrícola e a manutenção de ecossistemas.


Adatte, T., Keller, G., & Stinnesbeck, W. (2002). Late Cretaceous to early Paleocene climate and sea-level fluctuations: The Tunisian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 178(3–4), 165–196.

Aguirre-Gutiérrez, J., Kissling, W. D., Carvalheiro, L. G., WallisDeVries, M. F., Franzén, M., & Biesmeijer, J. C. (2016). Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 6(1), 24451.

Ahlberg, A., Herman, A. B., Raikevich, M., Rees, A., & Spicer, R. A. (2002). Enigmatic Late Cretaceous high palaeo-latitude lonestones in Chukotka, northeasternmost Asia. Gff, 124(4), 197–199.

Aizen, M.A., Smith-Ramírez, C., Morales, C.L., Vieli, L., Sáez, A., Barahona-Segovia, R.M., Arbetman, M.P., Montalva, J., Garibaldi, L.A., Inouye, D.W. & Harder, L.D. (2018) Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology 56, 100–106.

Almeida, E. A. B., Packer, L., Melo, G. A. R., Danforth, B. N., Cardinal, S. C., Quinteiro, F. B., & Pie, M. R. (2019). The diversification of neopasiphaeine bees during the Cenozoic (Hymenoptera: Colletidae). Zoologica Scripta, 48(2), 226–242.

Arismendi, N., Riveros, G., Zapata, N., Smagghe, G., González, C., & Vargas, M. (2021). Occurrence of bee viruses and pathogens associated with emerging infectious diseases in native and non-native bumble bees in southern Chile. Biological Invasions, 23(4), 1175–1189.

Baede, A. P. M., Ahlonsou, E., Ding, Y., Schimel, D., Bolin, B., & Pollonais, S. (2001). The climate system: an overview. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.j. van der Lide. Cambridge University Press, Cambridge, United Kingdom and New York, 881.

Bains, S., Corfield, R. M., & Norris, R. D. (1999). Mechanisms of climate warming at the end of the Paleocene. Science, 285(5428), 724–727.

Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S., Kornbluth, S., & Winfree, R. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20645–20649.

Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2), 281–313.

Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B., & Visser, M. E. (2009). Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations? Journal of Animal Ecology, 78(1), 73–83.

Branstetter, M. G., Danforth, B. N., Pitts, J. P., Faircloth, B. C., Ward, P. S., Buffington, M. L., Gates, M. W., Kula, R. R., & Brady, S. G. (2017). Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees. Current Biology, 27(7), 1019–1025.

Brown, M. J. F., & Paxton, R. J. (2009). The conservation of bees: A global perspective. Apidologie, 40(3), 410–416.

Burkle, L. A., Marlin, J. C., & Knight, T. (2013). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 339(6127), 1611–1615.

Burns, C. E., Johnston, K. M., & Schmitz, O. J. (2003). Global climate change and mammalian species diversity in U.S. national parks. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11474–11477.

Cardinal, S., & Danforth, B. N. (2013). Bees diversified in the age of eudicots. Proceedings of the Royal Society B: Biological Sciences, 280(1755).

Cariveau, D. P., & Winfree, R. (2015). Causes of variation in wild bee responses to anthropogenic drivers. Current Opinion in Insect Science, 10, 104–109.

Cavalcanti, I. F. A. (2016). Tempo e clima no Brasil. Oficina de textos.

Clarke, L. J., & Jenkyns, H. C. (1999). New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 27(8), 699–702.<0699:NOIEFL>2.3.CO;2

Cotton, P. A. (2003). Avian migration phenology and global climate change. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12219–12222.

Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., & Backman, J. (2005). Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433(7021), 53–57.

Dafni, A., Kevan, P., Gross, C.L. & Goka, K. (2010) Bombus terrestris, pollinator, invasive and pest: An assessment of problems associated with its widespread introductions for commercial purposes. Applied Entomology and Zoology 45, 101–113.

Daskalova, G. N., Myers-Smith, I. H., Bjorkman, A. D., Blowes, S. A., Supp, S. R., Magurran, A. E., & Dornelas, M. (2020). Landscape-scale forest loss as a catalyst of population and biodiversity change. 8.

Deconto, R. M., & Pollard, D. (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO. Nature, 421(6920), 1313–1317.

DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., & Pagani, M. (2008). Thresholds for Cenozoic bipolar glaciation. Nature, 455(7213), 652–656.

Dickens, G. R., Castillo, M. M., & Walker, J. C. G. (1997). A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3), 259–262.<0259:ABOGIT>2.3.CO;2

Engel, Mi. S. (2000). A New Interpretation of the Oldest Fossil Bee (Hymenoptera: Apidae). American Museum Novitates, 3296(3296), 1–11.<0001:anioto>;2

Giannini, T. C., Cordeiro, G. D., Freitas, B. M., Saraiva, A. M., & Imperatriz-Fonseca, V. L. (2015). The Dependence of Crops for Pollinators and the Economic Value of Pollination in Brazil. Journal of Economic Entomology, 108(3), 849–857.

Giannini, T.C., Alves, D.A., Alves, R., Cordeiro, G.D., Campbell, A.J., Awade, M., Bento, J.M.S., Saraiva, A.M. & Imperatriz-Fonseca, V.L. (2020) Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie 51, 406–421.

Giannini, Tereza C., Acosta, A. L., Garófalo, C. A., Saraiva, A. M., Alves-dos-Santos, I., & Imperatriz-Fonseca, V. L. (2012). Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling, 244, 127–131.

González-Varo, J. P., Biesmeijer, J. C., Bommarco, R., Potts, S. G., Schweiger, O., Smith, H. G., Steffan-Dewenter, I., Szentgyörgyi, H., Woyciechowski, M., & Vilà, M. (2013). Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 28(9), 524–530.

Gordo, O., Brotons, L., Ferrer, X., & Comas, P. (2005). Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Global Change Biology, 11(1), 12–21.

Gradstein, F. M., Ogg, J. G., & van Kranendonk, M. (2008). On the Geologic Time Scale 2008. Newsletters on Stratigraphy, 43(1), 5–13.

Grant, V. (1994). Modes and origins of mechanical and ethological isolation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 3–10.

Hay, W. W. (2011). Can humans force a return to a “Cretaceous” climate? Sedimentary Geology, 235(1–2), 5–26.

Hay, W. W., Flögel, S., & Söding, E. (2005). Is the initiation of glaciation on Antarctica related to a change in the structure of the ocean? Global and Planetary Change, 45(1-3 SPEC. ISS.), 23–33.

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184–195.

Heinrich, B. (1993). The hot-blooded insects: strategies and mechanisms of thermoregulation. In Harvard University Press.

Hejda, M., Pyšek, P., & Jarošík, V. (2009). Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 97(3), 393–403.

Heywood, V. H. (2011). Ethnopharmacology, food production, nutrition and biodiversity conservation: Towards a sustainable future for indigenous peoples. Journal of Ethnopharmacology, 137(1), 1–15.

Hill, J. K., Thomas, C. D., Fox, R., Telfer, M. G., Willis, S. G., Asher, J., & Huntley, B. (2002). Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proceedings of the Royal Society B: Biological Sciences, 269(1505), 2163–2171.

Hitch, A. T., & Leberg, P. L. (2007). Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology, 21(2), 534–539.

Houghton, R. A., & Hackler, J. L. (2001). Carbon Flux to the Atmosphere from Land-Use Changes : 1850 to 1990. Oak Ridge: Carbon Dioxide Information Center, Environmental Sciences Division, Oak Ridge National Laboratory, 2001, 1–18.

Hu, S., Dilcher, D. L., Jarzen, D. M., & Taylor, D. W. (2008). Early steps of angiosperm-pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America, 105(1), 240–245.

Huber, M., & Nof, D. (2006). The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 231(1–2), 9–28.

Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent? Integrative Zoology, 15(2), 56–61.

Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D., Nentwig, W., Olenin, S., Panov, V., Pergl, J., Pyšek, P., Roques, A., Sol, D., Solarz, W., & Vilà, M. (2008). Grasping at the routes of biological invasions: A framework for integrating pathways into policy. Journal of Applied Ecology, 45(2), 403–414.

IPCC [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., … & Zhou, B. (eds.)]. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press. URL: Acesso 08.04.2022

Jones, M. C., & Cheung, W. W. L. (2015). Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal Of Marine Science, 72(3), 741–752. Original

Kammerer, M., Goslee, S. C., Douglas, M. R., Tooker, J. F., & Grozinger, C. M. (2021). Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Global Change Biology, 27(6), 1250–1265.

Kennett, P., & Stott, D. (1991). Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353(September), 225–229.

Kerr, J. T., Pindar, A., Galpern, P., Packer, L., Potts, S. G., Roberts, S. M., Rasmont, P., Schweiger, O., Colla, S. R., Richardson, L. L., Wagner, D. L., Gall, L. F., Sikes, D. S., Pantoja, & Alberto. (2015). Across Continents. 349(6244), 177–180.

Kevan, P. G. (1999). Pollinators as bioindicators of the state of the environment: Species, activity and diversity. Agriculture, Ecosystems and Environment, 74(1–3), 373–393.

Klanderud, K., & Birks, H. J. B. (2003). Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene, 13(1), 1–6.

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313.

Knorr, G., Butzin, M., Micheels, A., & Lohmann, G. (2011). A warm Miocene climate at low atmospheric CO2 levels. Geophysical Research Letters, 38(20), 1–5.

Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771.

Martins, A. C., & Melo, G. A. R. (2010). Has the bumblebee Bombus bellicosus gone extinct in the northern portion of its distribution range in Brazil? Journal of Insect Conservation, 14(2), 207–210.

Martins, A. C., Silva, D. P., De Marco, P., & Melo, G. A. R. (2015). Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. Journal of Insect Conservation, 19(1), 33–43.

Menezes, R. S. T., Lloyd, M. W., & Brady, S. G. (2020). Phylogenomics indicates Amazonia as the major source of Neotropical swarm-founding social wasp diversity: Phylogenomics of epiponine wasps. Proceedings of the Royal Society B: Biological Sciences, 287(1928).

Michener, C. D. (2007). The Bees of the World. Second edition. In Johns Hopkins University Press; Baltimore, USA.

Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., & Sosdian, S. (2012). High tide of the warm pliocene: Implications of global sea level for Antarctic deglaciation. Geology, 40(5), 407–410.

Moritz, R.F.A., Härtel, S. & Neumann, P. (2005). Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301.

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.

Perrings, C., Dehnen-Schmutz, K., Touza, J., & Williamson, M. (2005). How to manage biological invasions under globalization. Trends in Ecology and Evolution, 20(5), 212–215.

Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Ecology: Climate change and distribution shifts in marine fishes. Science, 308(5730), 1912–1915.

Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., … Niehuis, O. (2017). Evolutionary History of the Hymenoptera. Current Biology, 27(7), 1013–1018.

Phillips, B. B., Shaw, R. F., Holland, M. J., Fry, E. L., Bardgett, R. D., Bullock, J. M., & Osborne, J. L. (2018). Drought reduces floral resources for pollinators. Global Change Biology, 24(7), 3226–3235.

Pielke, R. A., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., Niyogi, D. D. S., & Running, S. W. (2013). The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Capturing Carbon and Conserving Biodiversity: The Market Approach, 157–172.

Pinheiro. M., Gaglianone, M.C., Nunes, C.EP., Sigrist M.R & Alves-dos-Santos, I. (2014) Polinização por abelhas. In: Rech, A.R., Agostini. K., Oliveira P.E & Machado, I.C. (2014). Biologia da Polinização. Rio de Janeiro:Cores Belchior. 206p.

Poinar, G. O., & Danforth, B. N. (2006). A fossil bee from early cretaceous burmese amber. Science, 314(5799), 614.

Pollard, D., & DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236), 329–332.

Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology, 77(8), 1745–1779.

Rafferty, N. E., & Ives, A. R. (2011). Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecology Letters, 14(1), 69–74.

Raup, D. M., & Sepkoski, J. J. J. (1982). Mass extinctions in the marine fossil record. Science, 215(4539), 1501–1503.

Reboita, M. S., Pimenta, A. de P., & Natividade, U. A. (2015). Influência da inclinação do eixo de rotação da Terra na temperatura do ar global. Terrae Didatica, 11(2), 67.

Scotese, C.R., Song, H., Mills, B.J.W. & van der Meer, D.G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews 215, 103503.

Scott, G. R., & Johnston, I. A. (2012). Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14247–14252.

Silva, C. I., Aleixo, K. P., Nunes-Silva, B., Freitas, B. M., & Imperatriz-Fonseca, V. L. (2014). Guia ilustrado de abelhas polinizadoras no Brasil. São Paulo: Instituto de Estudos Ambientais, 7p.

Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology and Evolution, 28(1), 58–66.

Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5610–5615.

Tabarelli, M., Pinto, L. P., Silva, J. M. C., Hirota, M., & Bede, L. (2005). Challenges and Opportunities for Biodiversity Conservation in the Brazilian Atlantic Forest. Conservation Biology, 19(3), 695–700.

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Diqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

Trenberth, K. E., Miller, K., Mearns, L., & Rhodes, S. (2002). Effects of changing climate on weather and human activities. In Journal of Chemical Education, 79(4), 4-33.

Velthius, H. W., & Doorn, A. Van. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37(4), 421–451.

Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change: The need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272(1581), 2561–2569.

Walther, G. R., Burga, C. A., Edwards, P. J., & Eds. (2001). “Fingerprints” of Climate Change: Adapted Behaviour and Shifting Species Ranges;[proceedings of the International Conference" Fingerprints" for Climate Change: Adapted Behaviour and Shifting Species Ranges, Held February 23-25, 2001, at Ascona, Switzerlan. Science & Business Media.

Walther, G., Post, E., Convey, P., Menzel, A., Parmesank, C., Beebee, T. J. C., Fromentin, J., I, O. H., & Bairlein, F. (2002). Ecological response to recent climate cnahge. Nature, 416, 389–395.

Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M. & Widmann, M. (2008) Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 1791–1828.

Warren, M. S., Hill, J. K., Thomas, J. A., Asher, J., Fox, R., Huntley, B., Roy, D. B., Telfer, M. G., Jeffcoate, S., Harding, P., Jeffcoate, G., Willis, S. G., Greatorex-Davis, J. N., Moss, D., & Thomas, C. D. (2001). Rapid responses of British butterfies to opposing forces of climate and habitat change. Nature, 414, 65–69.

Wikström, N., Savolainen, V. & Chase, M.W. (2001) Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences 268, 2211–2220.

Wilf, P. (2000). Late paleocene-early eocene climate changes in Southwestern Wyoming: Paleobotanical analysis. Bulletin of the Geological Society of America, 112(2), 292–307.<292:LPECCI>2.0.CO;2

Willmer, P. (2014). Climate change: Bees and orchids lose touch. Current Biology, 24(23), R1133–R1135.

Wilson, E. O., & Hölldobler, B. (2005). Eusociality: Origin and consequences. Proceedings of the National Academy of Sciences, 102(38), 13367–13371.

Wuethrich, B. (2000). How Climate Change Alters Rhythms of the Wild. Science, 287(5454), 793–795.

You, Y., Huber, M., Müller, R. D., Poulsen, J., & Ribbe, J. (2009). Simulation of the middle miocene climate optimum. Geophysical Research Letters, 36(4), 1–5.

Zachos, J. C., Lohmann, K. C., Walker, J. C. G., & Wise, W. (1993). Abrupt climate change and transient climates during the Paleogene: A marine perspective. The Journal of Geology, 101(2), 191–213.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Terrae Didatica


Não há dados estatísticos.