Banner Portal
Mudanças climáticas e o declínio das abelhas
PDF

Palavras-chave

Alterações ambientais
Extinção
Hymenoptera
Temperatura

Como Citar

SANTOS, Juliana Brito; VIANA , Matheus Cavalcante; MARIANO, Cléa dos Santos Ferreira; MENEZES, Rodolpho Santos Telles de; NERY, Davi Galvão; BRANDÃO, Simone Nunes. Mudanças climáticas e o declínio das abelhas . Terrae Didatica, Campinas, SP, v. 18, n. 00, p. e022022, 2022. DOI: 10.20396/td.v18i00.8669210. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8669210. Acesso em: 16 abr. 2024.

Resumo

A Terra se mantém em constante transformação desde sua formação há 4,6 bilhões de anos; isso inclui mudanças no clima, na diversidade biológica e nos ecossistemas. Ações humanas, por meio de práticas insustentáveis, estão alterando os ciclos climáticos e os ecossistemas, causando mudanças rápidas no sistema Terra. O presente artigo aborda o impacto das mudanças climáticas atuais sobre as abelhas e suas graves consequências para as sociedades humanas. Começamos percorrendo a linha do tempo desde a evolução inicial das abelhas até os dias de hoje, discutindo as principais mudanças climáticas que ocorreram e relacionando tais eventos com a evolução das abelhas e das plantas com flores. Concluímos o artigo discutindo de que forma os efeitos indesejados das mudanças climáticas atuais, além de outros fatores, podem reduzir drasticamente populações de abelhas selvagens e manejadas, e comprometer a produção agrícola e a manutenção de ecossistemas.

https://doi.org/10.20396/td.v18i00.8669210
PDF

Referências

Adatte, T., Keller, G., & Stinnesbeck, W. (2002). Late Cretaceous to early Paleocene climate and sea-level fluctuations: The Tunisian record. Palaeogeography, Palaeoclimatology, Palaeoecology, 178(3–4), 165–196. https://doi.org/10.1016/S0031-0182(01)00395-9

Aguirre-Gutiérrez, J., Kissling, W. D., Carvalheiro, L. G., WallisDeVries, M. F., Franzén, M., & Biesmeijer, J. C. (2016). Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 6(1), 24451. https://doi.org/10.1038/srep24451

Ahlberg, A., Herman, A. B., Raikevich, M., Rees, A., & Spicer, R. A. (2002). Enigmatic Late Cretaceous high palaeo-latitude lonestones in Chukotka, northeasternmost Asia. Gff, 124(4), 197–199. https://doi.org/10.1080/11035890201244197

Aizen, M.A., Smith-Ramírez, C., Morales, C.L., Vieli, L., Sáez, A., Barahona-Segovia, R.M., Arbetman, M.P., Montalva, J., Garibaldi, L.A., Inouye, D.W. & Harder, L.D. (2018) Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology 56, 100–106. https://doi.org/10.1111/1365-2664.13121

Almeida, E. A. B., Packer, L., Melo, G. A. R., Danforth, B. N., Cardinal, S. C., Quinteiro, F. B., & Pie, M. R. (2019). The diversification of neopasiphaeine bees during the Cenozoic (Hymenoptera: Colletidae). Zoologica Scripta, 48(2), 226–242. https://doi.org/10.1111/zsc.12333

Arismendi, N., Riveros, G., Zapata, N., Smagghe, G., González, C., & Vargas, M. (2021). Occurrence of bee viruses and pathogens associated with emerging infectious diseases in native and non-native bumble bees in southern Chile. Biological Invasions, 23(4), 1175–1189. https://doi.org/10.1007/s10530-020-02428-w

Baede, A. P. M., Ahlonsou, E., Ding, Y., Schimel, D., Bolin, B., & Pollonais, S. (2001). The climate system: an overview. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.j. van der Lide. Cambridge University Press, Cambridge, United Kingdom and New York, 881.

Bains, S., Corfield, R. M., & Norris, R. D. (1999). Mechanisms of climate warming at the end of the Paleocene. Science, 285(5428), 724–727. https://doi.org/10.1126/science.285.5428.724

Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S., Kornbluth, S., & Winfree, R. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20645–20649. https://doi.org/10.1073/pnas.1115559108

Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L., & Gervasi, S. S. (2010). Direct and indirect effects of climate change on amphibian populations. Diversity, 2(2), 281–313. https://doi.org/10.3390/d2020281

Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B., & Visser, M. E. (2009). Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations? Journal of Animal Ecology, 78(1), 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x

Branstetter, M. G., Danforth, B. N., Pitts, J. P., Faircloth, B. C., Ward, P. S., Buffington, M. L., Gates, M. W., Kula, R. R., & Brady, S. G. (2017). Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees. Current Biology, 27(7), 1019–1025. https://doi.org/https://doi.org/10.1016/j.cub.2017.03.027

Brown, M. J. F., & Paxton, R. J. (2009). The conservation of bees: A global perspective. Apidologie, 40(3), 410–416. https://doi.org/10.1051/apido/2009019

Burkle, L. A., Marlin, J. C., & Knight, T. (2013). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 339(6127), 1611–1615.

Burns, C. E., Johnston, K. M., & Schmitz, O. J. (2003). Global climate change and mammalian species diversity in U.S. national parks. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11474–11477. https://doi.org/10.1073/pnas.1635115100

Cardinal, S., & Danforth, B. N. (2013). Bees diversified in the age of eudicots. Proceedings of the Royal Society B: Biological Sciences, 280(1755). https://doi.org/10.1098/rspb.2012.2686

Cariveau, D. P., & Winfree, R. (2015). Causes of variation in wild bee responses to anthropogenic drivers. Current Opinion in Insect Science, 10, 104–109. https://doi.org/10.1016/j.cois.2015.05.004

Cavalcanti, I. F. A. (2016). Tempo e clima no Brasil. Oficina de textos.

Clarke, L. J., & Jenkyns, H. C. (1999). New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 27(8), 699–702. https://doi.org/10.1130/0091-7613(1999)027<0699:NOIEFL>2.3.CO;2

Cotton, P. A. (2003). Avian migration phenology and global climate change. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12219–12222. https://doi.org/10.1073/pnas.1930548100

Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., & Backman, J. (2005). Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433(7021), 53–57. https://doi.org/10.1038/nature03135

Dafni, A., Kevan, P., Gross, C.L. & Goka, K. (2010) Bombus terrestris, pollinator, invasive and pest: An assessment of problems associated with its widespread introductions for commercial purposes. Applied Entomology and Zoology 45, 101–113. https://doi.org/10.1303/aez.2010.101

Daskalova, G. N., Myers-Smith, I. H., Bjorkman, A. D., Blowes, S. A., Supp, S. R., Magurran, A. E., & Dornelas, M. (2020). Landscape-scale forest loss as a catalyst of population and biodiversity change. 8.

Deconto, R. M., & Pollard, D. (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO. Nature, 421(6920), 1313–1317.

DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., & Pagani, M. (2008). Thresholds for Cenozoic bipolar glaciation. Nature, 455(7213), 652–656. https://doi.org/10.1038/nature07337

Dickens, G. R., Castillo, M. M., & Walker, J. C. G. (1997). A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3), 259–262. https://doi.org/10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2

Engel, Mi. S. (2000). A New Interpretation of the Oldest Fossil Bee (Hymenoptera: Apidae). American Museum Novitates, 3296(3296), 1–11. https://doi.org/10.1206/0003-0082(2000)3296<0001:anioto>2.0.co;2

Giannini, T. C., Cordeiro, G. D., Freitas, B. M., Saraiva, A. M., & Imperatriz-Fonseca, V. L. (2015). The Dependence of Crops for Pollinators and the Economic Value of Pollination in Brazil. Journal of Economic Entomology, 108(3), 849–857. https://doi.org/10.1093/jee/tov093

Giannini, T.C., Alves, D.A., Alves, R., Cordeiro, G.D., Campbell, A.J., Awade, M., Bento, J.M.S., Saraiva, A.M. & Imperatriz-Fonseca, V.L. (2020) Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie 51, 406–421. https://doi.org/10.1007/s13592-019-00727-3

Giannini, Tereza C., Acosta, A. L., Garófalo, C. A., Saraiva, A. M., Alves-dos-Santos, I., & Imperatriz-Fonseca, V. L. (2012). Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling, 244, 127–131. https://doi.org/10.1016/j.ecolmodel.2012.06.035

González-Varo, J. P., Biesmeijer, J. C., Bommarco, R., Potts, S. G., Schweiger, O., Smith, H. G., Steffan-Dewenter, I., Szentgyörgyi, H., Woyciechowski, M., & Vilà, M. (2013). Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 28(9), 524–530. https://doi.org/10.1016/j.tree.2013.05.008

Gordo, O., Brotons, L., Ferrer, X., & Comas, P. (2005). Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Global Change Biology, 11(1), 12–21. https://doi.org/10.1111/j.1365-2486.2004.00875.x

Gradstein, F. M., Ogg, J. G., & van Kranendonk, M. (2008). On the Geologic Time Scale 2008. Newsletters on Stratigraphy, 43(1), 5–13. https://doi.org/10.1127/0078-0421/2008/0043-0005

Grant, V. (1994). Modes and origins of mechanical and ethological isolation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 3–10. https://doi.org/10.1073/pnas.91.1.3

Hay, W. W. (2011). Can humans force a return to a “Cretaceous” climate? Sedimentary Geology, 235(1–2), 5–26. https://doi.org/10.1016/j.sedgeo.2010.04.015

Hay, W. W., Flögel, S., & Söding, E. (2005). Is the initiation of glaciation on Antarctica related to a change in the structure of the ocean? Global and Planetary Change, 45(1-3 SPEC. ISS.), 23–33. https://doi.org/10.1016/j.gloplacha.2004.09.005

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x

Heinrich, B. (1993). The hot-blooded insects: strategies and mechanisms of thermoregulation. In Harvard University Press.

Hejda, M., Pyšek, P., & Jarošík, V. (2009). Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 97(3), 393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x

Heywood, V. H. (2011). Ethnopharmacology, food production, nutrition and biodiversity conservation: Towards a sustainable future for indigenous peoples. Journal of Ethnopharmacology, 137(1), 1–15. https://doi.org/10.1016/j.jep.2011.05.027

Hill, J. K., Thomas, C. D., Fox, R., Telfer, M. G., Willis, S. G., Asher, J., & Huntley, B. (2002). Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proceedings of the Royal Society B: Biological Sciences, 269(1505), 2163–2171. https://doi.org/10.1098/rspb.2002.2134

Hitch, A. T., & Leberg, P. L. (2007). Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology, 21(2), 534–539. https://doi.org/10.1111/j.1523-1739.2006.00609.x

Houghton, R. A., & Hackler, J. L. (2001). Carbon Flux to the Atmosphere from Land-Use Changes : 1850 to 1990. Oak Ridge: Carbon Dioxide Information Center, Environmental Sciences Division, Oak Ridge National Laboratory, 2001, 1–18.

Hu, S., Dilcher, D. L., Jarzen, D. M., & Taylor, D. W. (2008). Early steps of angiosperm-pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America, 105(1), 240–245. https://doi.org/10.1073/pnas.0707989105

Huber, M., & Nof, D. (2006). The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 231(1–2), 9–28. https://doi.org/10.1016/j.palaeo.2005.07.037

Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent? Integrative Zoology, 15(2), 56–61. https://doi.org/10.1111/1749-4877.12006

Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D., Nentwig, W., Olenin, S., Panov, V., Pergl, J., Pyšek, P., Roques, A., Sol, D., Solarz, W., & Vilà, M. (2008). Grasping at the routes of biological invasions: A framework for integrating pathways into policy. Journal of Applied Ecology, 45(2), 403–414. https://doi.org/10.1111/j.1365-2664.2007.01442.x

IPCC [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., … & Zhou, B. (eds.)]. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press. URL: https://www.ipcc.ch/report/ar6/wg1/#FullReport. Acesso 08.04.2022

Jones, M. C., & Cheung, W. W. L. (2015). Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal Of Marine Science, 72(3), 741–752. https://doi.org/10.1093/icesjms/fsu172 Original

Kammerer, M., Goslee, S. C., Douglas, M. R., Tooker, J. F., & Grozinger, C. M. (2021). Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Global Change Biology, 27(6), 1250–1265. https://doi.org/10.1111/gcb.15485

Kennett, P., & Stott, D. (1991). Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353(September), 225–229.

Kerr, J. T., Pindar, A., Galpern, P., Packer, L., Potts, S. G., Roberts, S. M., Rasmont, P., Schweiger, O., Colla, S. R., Richardson, L. L., Wagner, D. L., Gall, L. F., Sikes, D. S., Pantoja, & Alberto. (2015). Across Continents. 349(6244), 177–180.

Kevan, P. G. (1999). Pollinators as bioindicators of the state of the environment: Species, activity and diversity. Agriculture, Ecosystems and Environment, 74(1–3), 373–393. https://doi.org/10.1016/S0167-8809(99)00044-4

Klanderud, K., & Birks, H. J. B. (2003). Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene, 13(1), 1–6. https://doi.org/10.1191/0959683603hl589ft

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721

Knorr, G., Butzin, M., Micheels, A., & Lohmann, G. (2011). A warm Miocene climate at low atmospheric CO2 levels. Geophysical Research Letters, 38(20), 1–5. https://doi.org/10.1029/2011GL048873

Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/science.1156831

Martins, A. C., & Melo, G. A. R. (2010). Has the bumblebee Bombus bellicosus gone extinct in the northern portion of its distribution range in Brazil? Journal of Insect Conservation, 14(2), 207–210. https://doi.org/10.1007/s10841-009-9237-y

Martins, A. C., Silva, D. P., De Marco, P., & Melo, G. A. R. (2015). Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. Journal of Insect Conservation, 19(1), 33–43. https://doi.org/10.1007/s10841-014-9740-7

Menezes, R. S. T., Lloyd, M. W., & Brady, S. G. (2020). Phylogenomics indicates Amazonia as the major source of Neotropical swarm-founding social wasp diversity: Phylogenomics of epiponine wasps. Proceedings of the Royal Society B: Biological Sciences, 287(1928). https://doi.org/10.1098/rspb.2020.0480rspb20200480

Michener, C. D. (2007). The Bees of the World. Second edition. In Johns Hopkins University Press; Baltimore, USA.

Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., & Sosdian, S. (2012). High tide of the warm pliocene: Implications of global sea level for Antarctic deglaciation. Geology, 40(5), 407–410. https://doi.org/10.1130/G32869.1

Moritz, R.F.A., Härtel, S. & Neumann, P. (2005). Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301. https://doi.org/10.2980/i1195-6860-12-3-289.1

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42. https://doi.org/10.1038/nature01286

Perrings, C., Dehnen-Schmutz, K., Touza, J., & Williamson, M. (2005). How to manage biological invasions under globalization. Trends in Ecology and Evolution, 20(5), 212–215. https://doi.org/10.1016/j.tree.2005.02.011

Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Ecology: Climate change and distribution shifts in marine fishes. Science, 308(5730), 1912–1915. https://doi.org/10.1126/science.1111322

Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., … Niehuis, O. (2017). Evolutionary History of the Hymenoptera. Current Biology, 27(7), 1013–1018. https://doi.org/https://doi.org/10.1016/j.cub.2017.01.027

Phillips, B. B., Shaw, R. F., Holland, M. J., Fry, E. L., Bardgett, R. D., Bullock, J. M., & Osborne, J. L. (2018). Drought reduces floral resources for pollinators. Global Change Biology, 24(7), 3226–3235. https://doi.org/10.1111/gcb.14130

Pielke, R. A., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., Niyogi, D. D. S., & Running, S. W. (2013). The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Capturing Carbon and Conserving Biodiversity: The Market Approach, 157–172. https://doi.org/10.4324/9781849770682

Pinheiro. M., Gaglianone, M.C., Nunes, C.EP., Sigrist M.R & Alves-dos-Santos, I. (2014) Polinização por abelhas. In: Rech, A.R., Agostini. K., Oliveira P.E & Machado, I.C. (2014). Biologia da Polinização. Rio de Janeiro:Cores Belchior. 206p.

Poinar, G. O., & Danforth, B. N. (2006). A fossil bee from early cretaceous burmese amber. Science, 314(5799), 614. https://doi.org/10.1126/science.1134103

Pollard, D., & DeConto, R. M. (2009). Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236), 329–332. https://doi.org/10.1038/nature07809

Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology, 77(8), 1745–1779. https://doi.org/10.1111/j.1095-8649.2010.02783.x

Rafferty, N. E., & Ives, A. R. (2011). Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecology Letters, 14(1), 69–74. https://doi.org/10.1111/j.1461-0248.2010.01557.x

Raup, D. M., & Sepkoski, J. J. J. (1982). Mass extinctions in the marine fossil record. Science, 215(4539), 1501–1503.

Reboita, M. S., Pimenta, A. de P., & Natividade, U. A. (2015). Influência da inclinação do eixo de rotação da Terra na temperatura do ar global. Terrae Didatica, 11(2), 67. https://doi.org/10.20396/td.v11i2.8640680

Scotese, C.R., Song, H., Mills, B.J.W. & van der Meer, D.G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503

Scott, G. R., & Johnston, I. A. (2012). Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14247–14252. https://doi.org/10.1073/pnas.1205012109

Silva, C. I., Aleixo, K. P., Nunes-Silva, B., Freitas, B. M., & Imperatriz-Fonseca, V. L. (2014). Guia ilustrado de abelhas polinizadoras no Brasil. São Paulo: Instituto de Estudos Ambientais, 7p.

Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology and Evolution, 28(1), 58–66. https://doi.org/10.1016/j.tree.2012.07.013

Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5610–5615. https://doi.org/10.1073/pnas.1316145111

Tabarelli, M., Pinto, L. P., Silva, J. M. C., Hirota, M., & Bede, L. (2005). Challenges and Opportunities for Biodiversity Conservation in the Brazilian Atlantic Forest. Conservation Biology, 19(3), 695–700. https://doi.org/10.1111/j.1523-1739.2005.00694.x

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Diqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148. https://doi.org/10.2307/j.ctv8jnzw1.37

Trenberth, K. E., Miller, K., Mearns, L., & Rhodes, S. (2002). Effects of changing climate on weather and human activities. In Journal of Chemical Education, 79(4), 4-33. https://doi.org/10.1021/ed079p433.3

Velthius, H. W., & Doorn, A. Van. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37(4), 421–451.

Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change: The need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272(1581), 2561–2569. https://doi.org/10.1098/rspb.2005.3356

Walther, G. R., Burga, C. A., Edwards, P. J., & Eds. (2001). “Fingerprints” of Climate Change: Adapted Behaviour and Shifting Species Ranges;[proceedings of the International Conference" Fingerprints" for Climate Change: Adapted Behaviour and Shifting Species Ranges, Held February 23-25, 2001, at Ascona, Switzerlan. Science & Business Media.

Walther, G., Post, E., Convey, P., Menzel, A., Parmesank, C., Beebee, T. J. C., Fromentin, J., I, O. H., & Bairlein, F. (2002). Ecological response to recent climate cnahge. Nature, 416, 389–395.

Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M. & Widmann, M. (2008) Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 1791–1828. https://doi.org/10.1016/j.quascirev.2008.06.013

Warren, M. S., Hill, J. K., Thomas, J. A., Asher, J., Fox, R., Huntley, B., Roy, D. B., Telfer, M. G., Jeffcoate, S., Harding, P., Jeffcoate, G., Willis, S. G., Greatorex-Davis, J. N., Moss, D., & Thomas, C. D. (2001). Rapid responses of British butterfies to opposing forces of climate and habitat change. Nature, 414, 65–69.

Wikström, N., Savolainen, V. & Chase, M.W. (2001) Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences 268, 2211–2220. https://doi.org/10.1098/rspb.2001.1782

Wilf, P. (2000). Late paleocene-early eocene climate changes in Southwestern Wyoming: Paleobotanical analysis. Bulletin of the Geological Society of America, 112(2), 292–307. https://doi.org/10.1130/0016-7606(2000)112<292:LPECCI>2.0.CO;2

Willmer, P. (2014). Climate change: Bees and orchids lose touch. Current Biology, 24(23), R1133–R1135. https://doi.org/10.1016/j.cub.2014.10.061

Wilson, E. O., & Hölldobler, B. (2005). Eusociality: Origin and consequences. Proceedings of the National Academy of Sciences, 102(38), 13367–13371. https://doi.org/10.1073/pnas.0505858102

Wuethrich, B. (2000). How Climate Change Alters Rhythms of the Wild. Science, 287(5454), 793–795. https://doi.org/10.1126/science.os-2.57.341-a

You, Y., Huber, M., Müller, R. D., Poulsen, J., & Ribbe, J. (2009). Simulation of the middle miocene climate optimum. Geophysical Research Letters, 36(4), 1–5. https://doi.org/10.1029/2008GL036571

Zachos, J. C., Lohmann, K. C., Walker, J. C. G., & Wise, W. (1993). Abrupt climate change and transient climates during the Paleogene: A marine perspective. The Journal of Geology, 101(2), 191–213.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Terrae Didatica

Downloads

Não há dados estatísticos.