Resumo
Transpressão representa a deformação por uma combinação entre contração e cisalhamento simples direcional e ao longo do mergulho (empurrão) de zonas de cisalhamento, em diferentes proporções. A deformação transpressiva é uma característica comum em diferentes orógenos, ao longo de margens convergentes de placas, e também em outros ambientes tectônicos. São revisados conceitos fundamentais para a compreensão da deformação transpressiva, em uma perspectiva histórica da evolução do conhecimento, a partir do acúmulo de observações de exemplos naturais e sofisticação dos modelos teórico-matemáticos. Além disso, a relação entre transpressão com alguns aspectos orogênicos importantes, como o magmatismo sintectônico, a partição da deformação e a exumação, também são abordados. Um estudo de caso, no limite entre ante-país e além-país no setor norte do Cinturão Dom Feliciano (Santa Catarina, Brasil), onde a deformação transpressiva regional culminou na partição da deformação em domínios estruturais, é apresentado como forma de ilustrar estes conceitos e relações.
Referências
Andrade, P. H. S., Bitencourt, M. F., Nardi, L. V. S., & De Toni, G. B. (2021). Intrusion of the Ediacaran multi-pulse Quatro Ilhas Granitoids under inclined transpression, Dom Felician Belt, Southern Brazil. Journal of South American Earth Sciences, 112, 103539. doi: https://doi.org/10.1016/j.jsames.2021.103539.
Alonso-Henar, J., Fernández, C., Díaz-Azpíroz, J. J. (2020). Application of the analytic model of general triclinic transpression with oblique extrusion to an active deformation zone: The Alhama de Murcia Fault (SE Iberian Peninsula). Journal of Structural Geology, 130, 103924. doi: https://doi.org/10.1016/j.jsg.2019.103924.
Bitencourt, M. F. & Nardi, L. V. S. (2000). Tectonic setting and sources of magmatism related to the Southern Brazilian Shear Belt. Revista Brasileira de Geociências, 30, 186-189. doi: https://doi.org/10.25249/0375-7536.2000301186189.
Brown, M. (1994). The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Science Reviews, 36, 83-130. doi: https://doi.org/10.1016/0012-8252(94)90009-4.
Brown, M., & Solar, G. S. (1998). Shear zone systems and melts: feedback relations and self-organization in orogenic belts. J. Struct. Geol., 20, 211-227. doi: https://doi.org/10.1016/S0191-8141(97)00068-0.
Brown, M. & Solar, G. S. (1999). The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophysics, 312, 1-33. doi: https://doi.org/10.1016/S0040-1951(99)00169-9.
Burchfield, B. C, Zhiliang, C., Hodges, K. V., Yuping, L., Royden, L. H., Changrong, D. & Jiene, X., (1992). The South Tibetan Detatchment System, Himalayan Orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America, Special Paper, 269. doi: https://doi.org/10.1130/SPE269-p1.
Carosi, R. & Palmeri, R. (2002). Orogen-parallel tectonic transport in the Variscan belt of northeastern Sardinia (Italy): implications for the exhumation of medium-pressure metamorphic rocks. Geological Magazine, 139, 497-511. doi: https://doi.org/10.1017/S0016756802006763.
Chatzaras, V., Xypolias, P., Kokkalas, S. & Koukouvelas, I. (2013). Tectonic evolution of a crustal-scale oblique ramp, Hellenides thrust belt, Greece. Journal of Structural Geology, 57, 16-37. doi: https://doi.org/10.1016/j.jsg.2013.10.003.
Chemale Jr., F., Mallmann, G., Bitencourt, M. F. & Kawashita, K. (2012). Time constraints on magmatism along the Major Gercino Shear Zone, southern Brazil: implications for West Gondwana reconstruction. Gondwana Research, 22 (1), 184-199. doi: https://doi.org/10.1016/j.gr.2011.08.018.
Chetty, T. R. K. & Bhaskar Rao, Y. J. (2006). The Cauvery Shear Zone, Southern Granulite Terrain, India: A crustal-scale flower structure. Gondwana Research, 10, 77-85. doi: https://doi.org/10.1016/j.gr.2005.11.017.
De Toni, G. B., Bitencourt, M. F., Konopásek, J., Martini, A., Andrade, P. H. S., Florisbal, L. M. & de Campos, R. S. (2020). Transpressive strain partitioning between the Major Gercino Shear Zone and the Tijucas Fold Belt, Dom Feliciano Belt, Santa Catarina, southern Brazil. Journal of Structural Geology, 136, 104058. doi: https://doi.org/10.1016/j.jsg.2020.104058.
De Toni, G. B., Bitencourt, M. F., Florisbal, L. M., Martini, A., & Nardi, L. V. S. (2024). Anatomy of the transpressional Dom Feliciano Belt and its pre-collisional isotopic (Sr–Nd) signatures: A contribution towards an integrated model for the Brasiliano/Pan-African orogenic cycle. Gondwana Research, 125, 180-209. doi: https://doi.org/10.1016/j.gr.2023.08.008.
Dehler, N. M. & Machado, R. (2006). Introdução aos conceitos de transpressão e transtração e exemplos de cinturões transpressivos. São Paulo: Sociedade Brasileira de Geologia. (Série de Textos, 2).
Dewey, J. F., Holdsworth, R. E., & Strachan, R. A. (1998). Transpression and transtension zones. In: Holdsworth, R. E., Strachan, R. A., & Dewey, J. F. (Eds.). (1998). Continental Transpressional and Transtensional Tectonics. London, Special Publication of the Geological Society, 135, pp. 1-14. doi: https://doi.org/10.1144/GSL.SP.1998.135.01.0.
Dias, R. & Ribeiro, A. (1994). Constriction in a transpressive regime: an example in the Iberian branch of the Ibero-Armorican arc. Journal of Structural Geology, 16, 1543-1554. doi: https://doi.org/10.1016/0191-8141(94)90032-9.
Díaz-Azpíroz, M., Barcos, L., Balanyá, J. C., Fernández, C., Expósito, I., & Czeck, D. M. (2014). Applying a general triclinic transpression model to highly partitioned brittle-ductile shear zones: A case study from the Torcal de Antequera massif, external Betics, southern Spain. Journal of Structural Geology, 68, 316-336. doi: https://doi.org/10.1016/j.jsg.2014.05.010.
Ebrahimi, Y., Shafieibafti, S., Derakhshani, R., & Esmaeilian, S. (2021). Slip partitioning and inclined transpression in the Bazargan fold and thrust belt, Central Iran Microcontinent, Kerman area, SE Iran. Journal of Structural Geology, 148, 104352. doi: https://doi.org/10.1016/j.jsg.2021.104352.
Egydio-Silva, M., Vauchez, A., Raposo, M. I. B., Bascouc, J., & Uhlein, A. (2005). Deformation regime variations in an arcuate transpressional orogeny (Ribeira belt, SE Brazil) imaged by anisotropy of magnetic susceptibility in granulites. Journal of Structural Geology, 27, 1750-1764. doi: https://doi.org/10.1016/j.jsg.2005.06.001.
Fernandez, C., & Díaz-Azpiroz, M. (2009). Triclinic transpression zones with inclined extrusion. Journal of Structural Geology, 31, 1255-1269. doi: https://doi.org/10.1016/j.jsg.2009.07.001.
Fernandez, C., Czeck, D. M. & Díaz-Azpíroz, M. (2013). Testing the model of oblique transpression with oblique extrusion in two natural cases: steps and consequences. Journal of Structural Geology, 54, 85-102. doi: https://doi.org/10.1016/j.jsg.2013.07.001.
Florisbal, L. M., Bitencourt, M. F., Janasi, V. A., Nardi, L. V. S. & Heaman, L. M. (2012). Petrogenesis of syntectonic granites emplaced at the transition from thrusting to transcurrent tectonics in post-collisional setting: whole-rock and Sr-Nd-Pb isotope geochemistry in the Neoproterozoic Quatro Ilhas and Mariscal granites, southern Brazil. Lithos, 153, 53-71. doi: https://doi.org/10.1016/j.lithos.2012.04.031.
Fossen, H. & Tikoff, B. (1993). The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. Journal of Structural Geology, 15, 413-422. doi: https://doi.org/10.1016/0191-8141(93)90137-Y.
Fossen, H. (2012). Geologia Estrutural. São Paulo, Oficina de Textos. 484p.
Foster, D. A., Goscombe, B. D. & Gray, D. R. (2009). Rapid exhumation of deep crust in an obliquely convergent orogen: The Kaoko Belt of the Damara Orogen. Tectonics, 28, TC4002. doi: https://doi.org/10.1029/2008TC002317.
Girard, R., 1993. Orogen-scale strain partitioning and an analogy to shearbands in the Torngat Orogen, northeastern Canadian Shield. Tectonophysics, 224, 363-370. doi: https://doi.org/10.1016/0040-1951(93)90038-L.
Goodwin, L. B. & Tikoff, B. (2002). Competency contrast, kinematics, and the development of foliations and lineations in the crust. Journal of Structural Geology, 24, 1065-1085. doi: https://doi.org/10.1016/S0191-8141(01)00092-X.
Goscombe, B. & Gray, D. R. (2009). Metamorphic response in orogens of different obliquity, scale and geometry. Gondwana Research, 15, 151-167. doi: https://doi.org/10.1016/j.gr.2008.07.005.
Harland, W. B., 1971. Tectonic transpression in Caledonian Spitzbergen. Geological Magazine, 108, 27-42. doi: https://doi.org/10.1017/S0016756800050937.
Holdsworth, R. E., Tavarnelli, E., Clegg, P., Pinheiro, R. V. L., Jones, R. R., & McCaffrey, K. J. W. (2002). Domainal deformation patterns and strain partitioning during transpression: an example from the Southern Uplands terrane, Scotland. Journal of the Geological Society of London, 159, 401-415. doi: https://doi.org/10.1144/0016-764901-123.
Jones, R. R. & Tanner, P. W. G. (1995). Strain partitioning in transpression zones. Journal of Structural Geology, 17, 793-802. doi: https://doi.org/10.1016/0191-8141(94)00102-6.
Jones, R. R. & Holdsworth, R. E. (1998). Oblique simple shear in transpression zones. In: Holdsworth, R. E., Strachan, R. A. & Dewey, J. F. (Eds.). (1998). Continental Transpressional and Transtensional Tectonics. London, Special Publication of the Geological Society, 135, pp. 35-40. doi: https://doi.org/10.1144/GSL.SP.1998.135.01.03.
Jones, R. R., Holdsworth, R. E. & Bailey, W. (1997). Lateral extrusion in transpression zones: the importance of boundary conditions. Journal of Structural Geology, 19, 1201-1217. doi: https://doi.org/10.1016/S0191-8141(97)00034-5.
Jones, R. R., Holdsworth, R. E., Clegg, P., McCaffrey, K., & Tavarnelli, E., 2004. Inclined transpression. Journal of Structural Geology, 26, 1531-1548. doi: https://doi.org/10.1016/j.jsg.2004.01.004.
Lister, G. S., & Williams, P. F. (1983). The partitioning of deformation in flowing rock masses. Tectonophysics, 92, 1-33. doi: https://doi.org/10.1016/0040-1951(83)90083-5.
Martil, M. M. D., Bitencourt, M. F., & Nardi, L. V. S. (2011). Caracterização estrutural e petrológica do magmatismo pré-colisional do Escudo Sul-Rio-Grandense: os ortognaisses do Complexo Metamórfico Várzea do Capivarita. Pesquisas em Geociências, 38, 181-201. doi: https://doi.org/10.22456/1807-9806.26383.
Martil, M. M. D., Bitencourt, M. F., Nardi, L. V. S., Koester, E. & Pimentel, M. M. (2017). Pre-collisional, Neoproterozoic (ca. 790 Ma) continental arc magmatism in southern Mantiqueira Province, Brazil: geochemical and isotopic constraints from the Várzea do Capivarita Complex. Lithos, 274-275, 39-52. doi: https://doi.org/10.1016/j.lithos.2016.11.011.
Martini, A., Bitencourt, M. F., Weinberg, R., De Toni, G. B. & Nardi, L. V. S. (2019a). From migmatite to magmas: crustal melting and generation of granite in the Camboriú Complex, south Brazil. Lithos, 340-341, 270-286. doi: https://doi.org/10.1016/j.lithos.2019.05.017.
Martini, A., Bitencourt, M. F., Weinberg, R. & De Toni, G. B (2019b). Melt-collecting structures and the formation of extraction dykes during syntectonic anatexis of the Camboriú Complex, south Brazil. Journal of Structural Geology, 127, 103866. doi: https://doi.org/10.1016/j.jsg.2019.103866.
Molnar, P. (1992). Brace-Goetze strength profiles, the partitioning of strike-slip and thrust faulting at zones of oblique convergence, and the stress heatflow paradox of the San Andreas Fault. In: Evans, B., & Wong, T.-F. (Eds.) (1992). Fault Mechanics and Transport Properties of Rocks. London: Academic Press. pp. 435-459. doi: https://doi.org/10.1016/S0074-6142(08)62833-8.
Mukherjee, S. (2013). Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. International Journal of Earth Sciences, 102, 1811-1835. doi: https://doi.org/10.1007/s00531-012-0806-z.
Neves, S. P., Vauchez, A. & Archanjo, C. J. (1996). Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil. Tectonophysics, 262, 349-364. doi: https://doi.org/10.1016/0040-1951(96)00007-8.
Paterson, S. R., Vernon, R. H. & Tobisch, O. T. (1989). A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology, 11(3), 349-363. doi: https://doi.org/10.1016/0191-8141(89)90074-6.
Philippon, M. & Corti, G. (2016). Obliquity along plate boundaries. Tectonophysics, 693, 171-182. doi: https://doi.org/10.1016/j.tecto.2016.05.033.
Pinet, N. & Cobbold, P. R. (1992). Experimental insights into the partitioning of motion within zones of oblique subduction. Tectonophysics, 206, 371-388. doi: https://doi.org/10.1016/0040-1951(92)90388-M.
Ramsay, J. G. (1967). Folding and Fracturing of Rocks. New York: McGraw-Hill.
Robin, P.-Y. F. & Cruden, A. R. (1994). Strain and vorticity patterns in ideally ductile transpression zones. Journal of Structural Geology, 16, 447-466. doi: https://doi.org/10.1016/0191-8141(94)90090-6.
Romeo, I., Capote, R., Tejero, R., Lunar, R. & Quesada, C. (2006). Magma emplacement in transpression: The Santa Olalla Igneous Complex (Ossa-Morena Zone, SW Iberia). Journal of Structural Geology, 28, 1821-1834. doi: https://doi.org/10.1016/j.jsg.2006.06.007.
Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., & Tikoff, B. (2011). Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 500, 20-33. doi: https://doi.org/10.1016/j.tecto.2009.12.009.
Sanderson, D. J., & Marchini, W. R. D. (1984). Transpression. Journal of Structural Geology, 6, 449-458. doi: https://doi.org/10.1016/0191-8141(84)90058-0.
Schwerdtner, W. M. (1989). The solid-body tilt of deformed paleohorizontal planes: application to an Archean transpression zone, southern Canadian Shield. Journal of Structural Geology, 11, 1021-1027. doi: https://doi.org/10.1016/0191-8141(89)90052-7.
Thompson, A. B., Schulmann, K. & Jezek, J., 1997. Thermal evolution and exhumation in obliquely convergent (transpressive) orogens. Tectonophysics, 280, 171-184. doi: https://doi.org/10.1016/S0040-1951(97)00144-3.
Tikoff, B. & Tessier, C. (1994). Strain modeling of displacement field partitioning in transpressional orogens. Journal of Structural Geology, 11, 1575-1588. doi: https://doi.org/10.1016/0191-8141(94)90034-5.
Tikoff, B., Teyssier, C. & Waters, C. (2002). Clutch tectonics and the partial attachment of lithospheric layers. EGU Stephan Mueller Special Publication Series, 1, 57-73. doi: https://doi.org/10.5194/smsps-1-57-2002.
Tommasi, A., Vauchez, A., Fernandes, L. A. D., & Porcher, C. C. (1994). Magma-assisted strain localization in an orogen parallel transcurrent shear zone of southern Brazil. Tectonics, 13, 421-437. doi: https://doi.org/10.1029/93TC03319.
Vanderhaeghe, O., Burg, J.-R. & Teyssier, C. (1999). Exhumation of migmatites in two collapsed orogens: Canadian Cordillera and French Variscides. In: Ring, U., Brandon, M. T., Lister, G. S., & Wilett, S. D. (Eds.). Exhumation Processes: Normal Faulting, Ductile Flow and Erosion. Special Publication of the Geological Society, London, 154, pp. 181-204. doi: https://doi.org/10.1144/GSL.SP.1999.154.01.0.
Vauchez, A. & Nicolas, A. (1991). Mountain building: strike-parallel displacements and mantle anisotropy. Tectonophysics, 185, 183-201. doi: https://doi.org/10.1016/0040-1951(91)90443-V.
Xypolias, P., Kokkalas, S. & Skourlis, K. (2003). Upward extrusion and subsequent transpression as a possible mechanism for the exhumation of HP/LT rocks in Evia Island (Aegean Sea, Greece). Journal of Geodynamics, 35, 303-332. doi: https://doi.org/10.1016/S0264-3707(02)00131-X.
Xypolias, P. (2010). Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology, 32, 2072-2092. doi: https://doi.org/10.1016/j.jsg.2010.08.009.
Zhang, B., Zhang, J., Chang, Z., Wang, X., Cai, F., Lai, Q. (2012). The Biluoxueshan transpressive deformation zone monitored by synkinematic plutons, around the Eastern Himalayan Syntaxis. Tectonophysics, 574-575, 158-180. doi: https://doi.org/10.1016/j.tecto.2012.08.017.
Zibra, I., Kruhl, J. H., Montanini, A., & Tribuzio, R. (2012). Shearing of magma along a high-grade shear zone: evolution of microstructures during the transition from magmatic to solid-state flow. Journal of Structural Geology, 37, 150-160. doi: https://doi.org/10.1016/j.jsg.2012.01.011.
Zibra, I., Smithies, R. H., Wingate, M. T. D. & Kirkland, C. L. (2014). Incremental pluton emplacement during inclined transpression. Tectonophysics, 623, 100-122. doi: https://doi.org/10.1016/j.tecto.2014.03.020.
Zoback, M. D., & Healy, J. H. (1992). In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: implications for the mechanics of crustal faulting. Journal of Geophysical Research, 97, 5039-5057. doi: https://doi.org/10.1029/91JB02175.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Giuseppe Betino De Toni