Banner Portal
Extratropical cyclones
PDF (Português (Brasil))

Keywords

Development process
Precipitation
Strong winds
Trajectory density
Radius of the cyclones

How to Cite

REBOITA, Michelle Simões; MARRAFON, Vitor Hugo. Extratropical cyclones : what are, climatology and impacts in Brazil. Terræ Didatica, Campinas, SP, v. 17, n. 00, p. e021032, 2021. DOI: 10.20396/td.v17i00.8666028. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8666028. Acesso em: 17 jul. 2024.

Abstract

 The atmospheric system called extratropical cyclone, when mentioned in the Brazilian media, in general, causes panic in the population. Then, this system is addressed here in simple language since our purpose is to share, with all those interested in the subject, information about the definition and formation processes of extratropical cyclones, the impacts they cause in Brazil and their climatological aspects in the Southern Hemisphere and the South Atlantic Ocean. This study is methodologically based on a literature review as well as in the use of state-of-the-art data (ERA5 reanalysis) and cyclone identification and tracking algorithm. Thus, extratropical cyclones are identified from 1991 to 2020 through sea level pressure data from the ERA5 reanalysis. Among the results, we show that the latitudinal band in the neighborhood of Antarctica is the one that presents the highest frequency of cyclones. However, these systems are also frequent in southeast Australia and in the South America coast between the latitudes of Rio de Janeiro and south of Argentina. Considering the Southern Hemisphere, extratropical cyclones are more frequent and intense in the winter months. Over the south and southeast coasts of Brazil, there is a higher frequency of these systems in summer.

https://doi.org/10.20396/td.v17i00.8666028
PDF (Português (Brasil))

References

Ahrens, C. D., & Henson, R. (2021). Meteorology today: an introduction to weather, climate, and the environment. Cengage learning.

Befort, D. J., Wild, S., Kruschke, T., Ulbrich, U. & Leckebusch, G. C. (2016). Different long‐term trends of extra‐tropical cyclones and windstorms in ERA‐20C and NOAA‐20CR reanalyses. Atmospheric Science Letters, 17(11), 586-595. doi: 10.1002/asl.694.

Bell, S. S., Chand, S. S., Camargo, S. J., Tory, K. J., Turville, C., & Ye, H. (2019). Western North Pacific tropical cyclone tracks in CMIP5 models: Statistical assessment using a model-independent detection and tracking scheme. Journal of Climate, 32(21), 7191-7208. doi: 10.1175/JCLI-D-18-0785.1.

Bjerknes, J. (1919). On the structure of moving cyclones. Monthly Weather Review, 47(2), 95-99. doi: 10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2.

Bjerknes, J., & Solberg, H. (1922). Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys. Publik., 3(1), 1-18.

Candella, R. N., & de Araujo, C. E. S. (2021). Meteotsunamis in Brazil: an overview of known occurrences from 1977 to 2020. Natural Hazards, 106(2), 1563-1579. doi: 10.1007/s11069-020-04331-y.

Candella, R. N., & Souza, S. M. L. (2013). Ondas oceânicas extremas na costa Sul-Sudeste brasileira geradas por ciclone com trajetória anormal em maio de 2011. Revista Brasileira de Meteorologia, 28(4), 441-456. doi: 10.1590/S0102-77862013000400010

Celemín, A. H. (1984). Meteorologia Prática. Edición del Autor, Mar del Plata, República Argentina. 313p.

Cyclogenesis. Disponível em: https://www.britannica.com/science/cyclogenesis. Acesso em: 12. 04. 2021.

Rocha, R. P., Sugahara, S., & da Silveira, R. B. (2004). Sea waves generated by extratropical cyclones in the South Atlantic Ocean: Hindcast and validation against altimeter data. Weather and forecasting, 19(2), 398-410. doi: 10.1175/1520-0434(2004)019<0398:SWGBEC>2.0.CO;2.

Gan, M. A. & Rao V. B. (1991). Surface cyclogenesis over South America. Monthly Weather Review, 119(5), 1293-1302. doi: 10.1175/1520-0493(1991)119<1293:SCOSA>2.0.CO;2.

Holton, J. R. (2004). An introduction to dynamic meteorology. 4 ed. International geophysics series. Burlington, Elsevier Academic Press. 535p.

Hoskins, B. J., & Hodges, K. I. (2005). A new perspective on Southern Hemisphere storm tracks. Journal of Climate, 18(20), 4108-4129. doi: 10.1175/JCLI3570.1.

Kodoma, C., Stevens, B., Mauritsen, T., Seiki, T., & Satoh, M. (2019). A New Perspective for Future Precipitation Change from Intense Extratropical Cyclones. Geophysical Research Letters, 46(21), 12435-12444. doi: 10.1029/2019GL084001.

Kousky, V. E. & Elias, M. (1982). Meteorologia Sinótica Parte I. INPE-2605-MD/021, São José dos Campos. 118p.

Kruschke, T., Rust, H. W., Kadow, C., Leckebusch, G. C., & Ulbrich, U. (2014) Evaluating decadal predictions of northern hemispheric cyclone frequencies. Tellus A: Dynamic Meteorology and Oceanography, 66(1), p. 22830. doi: 10.3402/tellusa.v66.22830.

Leckebusch, G. C., & Ulbrich, U. (2004). On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global and Planetary Change, 44(1-4), 181-193, 2004. doi: 10.1016/j.gloplacha.2004.06.011

Leckebusch, G. C., Koffi, B., Ulbrich, U., Pinto, J. G., Spangehl, T., & Zacharias, S. (2006). Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Research, 31(1), 59-74. doi: 10.3354/cr031059.

Lim, E. P., & Simmonds, I. (2007). Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. Journal of Climate, 20(11), 2675-2690. doi: 10.1175/JCLI4135.1.

Lim, E. P., & Simmonds, I. (2009). Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Climate dynamics, 33(1), 19-32. doi: 10.1007/s00382-008-0444-0.

Lim, E. P., & Simmonds, I. (2009). Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Climate dynamics, 33(1), 19-32. doi: 10.1007/s00382-008-0444-0.

Lima, A. D. S., Khalid, A., Miesse, T. W., Cassalho, F., Ferreira, C., Scherer, M. E. G., & Bonetti, J. (2020). Hydrodynamic and waves response during storm surges on the Southern Brazilian coast: A hindcast study. Water, 12(12), 3538. doi: 10.3390/w12123538.

Machado, A. A., & Calliari, L. J. (2016). Synoptic systems generators of extreme wind in Southern Brazil: atmospheric conditions and consequences in the coastal zone. Journal of Coastal Research, (75), 1182-1186. doi: 10.2112/SI75-237.1

Marques, W. C. (2005). Padrões de variabilidade temporal nas forçantes da circulação e seus efeitos na dinâmica da Lagoa dos Patos, Rio Grande do Sul, Brasil. Universidade do Rio Grande. (Dissertação de mestrado). Disponível em: http://repositorio.furg.br/handle/1/3502. Acesso em: 16. 09. 2021.

Marrafon, V. H., & Reboita, M. S. (2019). Revisitando a Equação do Desenvolvimento de Sutcliffe. Anuário do Instituto de Geociências, 41(3), 614-629. doi: 10.5380/abclima.v28i0.74460.

Marrafon, V. H., Reboita, M. S., Rocha, R. P. da, & Crespo, N. M. (2021). Ciclones Extratropicais no Hemisfério Sul: Comparação entre diferentes Reanálises. Revista Brasileira de Climatologia, 28. doi: 10.5380/abclima.v28i0.74460.

Messmer, M., & Simmonds, I. (2021). Global analysis of cyclone-induced compound precipitation and wind extreme events. Weather and Climate Extremes, 32, 100324. doi: 10.016/j.wace.2021.100324.

Meteoblue. Disponível em: https://www.meteoblue.com/en/weather/map. Acesso em: 14. 05. 2021.

Möller, O. O. Jr., & Casting, P. (1999). Hydrographical Characteristics of the Estuarine Area of Patos Lagoon (301S, Brazil). In: Perillo, G. M. E. & Piccolo, M. D. (Eds.). (1999). Estuaries of South America of South America (their Geomorphology and Dynamics). Environmental Science. Berlim, Springer. pp. 83-100.

Murray, R. J. & Simmonds, I. (1991a). A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Australian Meteorological Magazine, 39(3), 155-166.

Murray, R. J., & Simmonds, I. (1991b) A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations. Australian Meteorological Magazine, 39(3), 167-180.

Oliveira, U. R., Simões, R. S., Romeu, M., Calliari, L. J., & Reboita, M. (2020). Tsunamis Meteorológicos no Sul do Brasil: Processo de formação, áreas de ocorrência e impactos associados. In: X Encontro da Rede BRASPOR, 1, 43-44.

Parise, C. K., Calliari, L. J., & Krusche, N. (2009). Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion. Brazilian Journal of Oceanography, 57(3), 175-188. Disponível em: https://www.scielo.br/j/bjoce/a/WfxcWmTHgq6pctypbZtYS9p/abstract/?lang=en. Acesso em: 16. 09. 2021.

Peixoto, J.P. & Oort, A.H. (1992). Physics of Climate. United States. 520p.

Pezza, A. B. & Ambrizzi, T. (2003). Variability of Southern Hemisphere cyclone and anticyclone behavior: Further analysis. Journal of Climate, 16(7), 1075-1083. doi: 10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO;2.

Pinto, J. G., Spangehl, T., Ulbrich, U. & Speth, P. (2005). Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift, 14(6), 823-838. doi: 10.1127/0941-2948/2005/0068.

Reboita, M. S., Rocha, R. P. da & Ambrizzi, T. (2012). Dynamic and Climatological Features of Cyclonic Developments over Southwestern South Atlantic Ocean, In: Veress, B., Szigethy, J. (Orgs.). (2012). Horizons in Earth Science Research, 6, 135-160.

Reboita, M. S., Rocha, R. P. da, Ambrizzi, T. & Gouveia, C. D. (2015). Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, 45(7-8), 1929-1944.doi: 10.1007/s00382-014-2447-3.

Reboita, M. S., Rocha, R. P. da, Ambrizzi, T. & Sugahara, S. (2010). South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35(7-8), 1331-1347.doi: 10.1007/s00382-009-0668-7.

Reboita, M. S., Rocha, R. P. da, de Souza, M. R., & Llopart, M. (2018). Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2‐ES and RegCM4 projections. International Journal of Climatology, 38(6), 2866-2879. doi: 10.1002/joc.5468.

Reboita, M. S., Gan, M. A., Rocha, R. P. da & Custódio, I. S. (2017a). Ciclones em Superfície nas Latitudes Austrais: Parte I-Revisão Bibliográfica. Revista Brasileira de Meteorologia, 32(2), 171-186. doi: 10.1590/0102-77863220010.

Reboita, M. S., Gan, M. A., Rocha, R. P. da, & Custódio, I. S. (2017b). Ciclones em Superfície nas Latitudes Austrais: Parte II Estudo de Casos. Revista Brasileira de Meteorologia, 32(4), 509-542. doi: 10.1590/0102-7786324002.

Reboita, M. S., Iwabe, C. M. N., Rocha, R. P. da, & Ambrizzi, T. (2009). Análise de um ciclone semi-estacionário na costa sul do Brasil associado a bloqueio atmosférico. Revista Brasileira de Meteorologia, 24, 407-422. doi: 10.1590/S0102-77862009000400004.

Reboita, M. S., Mattos, E. V., Nascimento, E., Capucin, B. C., Silva, B. A., Biscaro, T. S., Santos, A. P. P., & Enoré, D. P. (2021). Severe Weather in Southern Brazil associated with Synoptic and Mesoscale Systems. (Em prep.).

Reboita, M. S., Reale, M., Rocha, R. P. da, Giorgi, F., Giuliani, G., Coppola, E., Nino, R. B. L., Llopart, M., Torres, J. A. & Cavazos, T. (2020). Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Climate Dynamics, 1-17. doi: 10.1007/s00382-020-05317-z.

Rocha, R. P., Sugahara, S., & da Silveira, R. B. (2004). Sea waves generated by extratropical cyclones in the South Atlantic Ocean: Hindcast and validation against altimeter data. Weather and forecasting, 19(2), 398-410. doi: 10.1175/1520-0434(2004)019<0398:SWGBEC>2.0.CO;2.

Sanders, F., & Gyakum, J. R. (1980). Synoptic-dynamic climatology of the “bomb”. Monthly Weather Review, 108(10), 1589-1606. doi: 10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

Saraiva, J. M., Bedran, C., & Carneiro, C. (2003). Monitoring of storm surges on Cassino Beach, RS, Brazil. Journal of Coastal Research, 323-331. Disponível em: https://www.jstor.org/stable/40928778. Acesso em: 16. 09. 2021.

Seiler, L. M. N. (2014). Modelagem numérica da Lagoa dos Patos: variação espacial e temporal da qualidade da água (Doctoral dissertation, Universidade de São Paulo). Disponível em: https://www.teses.usp.br/teses/disponiveis/21/21136/tde-23042015-103406/en.php. Acesso em: 16. 09. 2021.

Simmonds, I. & Keay, K. (2000). Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. Journal of Climate, 13(5), 873-888. doi: 10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2.

Simmonds, I. R.J. & Murray, R.M. (1999). A refinement of cyclone tracking methods with data from FROST. Australian Meteorological Magazine, 28, 617-622.

Ventusky. URL: ventusky.com. Acesso 20.05.2021.

Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: an introductory survey. Elsevier. (v. 92).

World Meteorological Organization (WMO). (2017). WMO guidelines on the calculation of climate normals. World Meteorological Organization.

Ynoue, R. Y., Reboita, M. S., Ambrizzi, T., & da Silva, G. A. (2017). Meteorologia: noções básicas. Oficina de Textos.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Terrae Didatica

Downloads

Download data is not yet available.