Banner Portal
Procesos de cambio climático durante la "Pequeña Edad de Hielo" bajo el enfoque de la ciencia del sistema terrestre
Camadas rítmicas da Formação Irati, Permiano da Bacia do Paraná
PDF (Português (Brasil))

Palabras clave

Geologia
Holoceno
Glaciação
Geociências
Mudança climática
Meio ambiente

Cómo citar

CARNEIRO, Celso Dal Ré; FRANCO, Lucca Martins; FREITAS, Gabriel Bueno Fagundes de; GONÇALVES, Pedro Wagner. Procesos de cambio climático durante la "Pequeña Edad de Hielo" bajo el enfoque de la ciencia del sistema terrestre. Terræ Didatica, Campinas, SP, v. 15, p. e019043, 2019. DOI: 10.20396/td.v15i0.8657525. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8657525. Acesso em: 17 jul. 2024.

Resumen

Hay incertidumbres sobre la duración exacta de la "Pequeña Edad de Hielo" entre los siglos XVI y XIX. Hubo un enfriamiento intenso en diferentes regiones del hemisferio norte y algunos efectos globales como la expansión del casquete polar, la reducción de las temperaturas promedio en verano y el aumento de las precipitaciones en invierno. Motivado por el interés didáctico del tema, esta revisión buscó recomponer el conocimiento científico y el debate sobre hipótesis, modelos de evolución climática del Holoceno e interpretaciones de posibles causas. Estudiamos los mecanismos que condicionan el cambio climático abrupto. A pesar de la divergencia entre los climatólogos sobre la datación de los registros glaciales, dibujamos puntos convergentes que delinean una visión sistémica de los factores determinantes del clima global en la actualidad.

https://doi.org/10.20396/td.v15i0.8657525
PDF (Português (Brasil))

Citas

Ammann, C. M.; Joos, F.; Schimel, D. S.; Otto-Bliesner, B. L.; & Tomas, R. A. (2007). Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proceedings of the National Academy of Sciences, 104(10), 3713-3718.

Briffa, K. R. & Matthews, J. A. (2005). The ‘Little Ice Age’: Re‐evaluation of an evolving concept. Geografiska Annaler: Series A, Physical Geography, 87(1), 17-36.

Briffa, K. R.; Jones, P. D.; Schweingruber, F. H.; & Osborn, T. J. (1998). Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 393(6684), 450-455.

Carneiro, C. D. R.; Freitas, G. B. F. de; Franco, L. M.; & Gonçalves, P. W. (2018). O que a Pequena Idade do Gelo pode nos ensinar sobre mudança climática? In: Carneiro, C.D.R.; Gonçalves P.W.; Imbernon, R.A.L.; Machado, F.B.; Cerri, C.A.D. (Eds.) (2018). Ensino e História de Ciências da Terra. Campinas: Soc. Bras. Geol. p. 260-265. URL: http://www.ige.unicamp.br/geoscied2018/pt/trabalhos/. (Anais VIII Simp. Nac. Ens. Hist. Ciências da Terra / EnsinoGEO-2018 – Geociências para todos. Campinas, SBGeo, 2018). (ISBN 978-85-99198-21-6).

Carneiro, C. D. R.; Freitas, G. B. F. de; Franco, L. M.; & Gonçalves, P. W. (2019). A Pequena Idade do Gelo: evidências históricas e geológicas de mudanças climáticas. Revista Geonomos. (Submetido em 28.ago.2019).

Carneiro, C. D. R.; Toledo, M. C. M.; & Almeida, F. F. M. de. (2004). Dez motivos para a inclusão de temas de Geologia na educação básica. Rev. Bras. Geoc., 34(4), 553-560. doi: 10.25249/0375-7536.2004344553560.

Cobb, K. M.; Charles, C. D.; Cheng, H.; & Edwards, R. L. (2003). El Nino/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424(6946), 271-276.

Collins, W. D.; Bitz, C. M.; Blackmon, M. L.; Bonan, G. B.; Bretherton, C. S.; Carton, J. A.; ... & Kiehl, J. T. (2006). The community climate system model version 3 (CCSM3). Journal of Climate, 19(11), 2122-2143.

Crowley, T. J. (2000). Causes of climate change over the past 1,000 years. Science, 289(5477), 270-277.

Crowley, T. J.; Zielinski, G.; Vinther, B.; Udisti, R.; Kreutz, K.; Cole-Dai, J.; & Castellano, E. (2008). Volcanism and the little ice age. PAGES news, 16(2), 22-23.

Dahl-Jensen, D.; Mosegaard, K.; Gundestrup, N.; Clow, G. D.; Johnsen, S. J.; Hansen, A. W.; & Balling, N. (1998). Past temperatures directly from the Greenland ice sheet. Science, 282(5387), 268-271.

Fischer, E. M.; Luterbacher, J.; Zorita, E.; Tett, S. F. B.; Casty, C.; & Wanner, H. (2007). European climate response to tropical volcanic eruptions over the last half millennium. Geophysical Research Letters, 34, L05707. doi: 10.1029/2006GL027992.

Gao, C.; Robock, A.; & Ammann, C. (2008). Volcanic forcing of climate over the past 1500 years: An improved ice core‐based index for climate models. Journal of Geophysical Research: Atmospheres, 113, D23. doi: 10.1029/2008JD010239.

Holzhauser, H. (1997). Fluctuations of the Grosser Aletsch Glacier and the Gorner Glacier during the last 3200 years: new results. Glacier fluctuations during the Holocene. Akademie der Wissenschaften und der Literatur, 35-58.

Hurrell, J. W. (1996). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Oceanographic Literature Review, 2(43), 116.

Jones, P. D.; Jonsson, T.; & Wheeler, D. (1997). Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Intern. J. Climatology, 17(13), 1433-1450.

Jones, P.D.; & Bradley, R.S. (1992). Climatic variations over the last 500 years. In Bradley, R.S.; Jones, P.D. (Eds.) (1992). Climate since AD 1500. London and New York: Routledge, p. 649-65.

Koerner, R. M. (2005). Mass balance of glaciers in the Queen Elizabeth Islands, Nunavut, Canada. Annals of Glaciology, 42(1), 417-423.

Larsen, D. J.; Miller, G. H.; Geirsdóttir, Á.; & Thordarson, T. (2011). A 3,000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland. Quaternary science reviews, 30(19), 2715-2731.

Lean, J.; Beer, J.; & Bradley, R. (1995). Reconstruction of solar irradiance since 1610: Implications for climate change. Geophysical Research Letters, 22, 3195-3198. doi: 10.1029/95gl03093.

Luterbacher, J.; & Pfister, C. (2015). The year without a summer. Nature Geoscience, 8(4), 246-248.

Manley, G. (1974). Central England temperatures: monthly means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society, 100(425), 389-405.

Mann, M. E. (2002). Little Ice Age. Encyclopedia of global environmental change, 1, 504-509.

Mann, M. E.; Bradley, R. S.; & Hughes, M. K. (1999). Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research letters, 26(6), 759-762.

Mann, M. E.; Zhang, Z.; Rutherford, S.; Bradley, R. S.; Hughes, M. K.; Shindell, D.; Ammann, C.; Faluvegi, G. & NI, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1256-1260.

Massé, G.; Rowland, S. J.; Sicre, M. A.; Jacob, J.; Jansen, E.; & Belt, S. T. (2008). Abrupt climate changes for Iceland during the last millennium: evidence from high resolution sea ice reconstructions. Earth and Planetary Science Letters, 269(3), 565-569.

Miller, G. H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D. J.; Otto‐Bliesner, B. L.; Holland, M. M.; ... & Anderson, C. (2012). Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea‐ice/ocean feedbacks. Geophysical Research Letters, 39, L02708. doi: 10.1029/2011gl050168.

Miyake, F.; Masuda, K.; & Nakamura, T. 2013. Lengths of Schwabe cycles in the seventh and eighth centuries indicated by precise measurement of carbon-14 content in tree rings. J. Geophys. Res.: Space Physics, 118, 7483–7487. doi: 10.1002/2012JA018320.

Nesje, A.; & Dahl, S. O. (2003). The ‘Little Ice Age’–only temperature? The Holocene, 13(1), 139-145. doi: 10.1191/0959683603hl603fa.

Oliveira, M. J.; Baptista, G. M. M.; Carneiro, C. D. R.; & Vecchia, F. A. S. (2015). História geológica e Ciência do clima: Métodos e origens do estudo dos ciclos climáticos na Terra. Terræ, 12(1), 03-26. URL: http://www.ige.unicamp.br/terrae/V12/T_V12_1.html.

Reichert, B. K.; Bengtsson, L.; & Oerlemans, J. (2001). Midlatitude forcing mechanisms for glacier mass balance investigated using general circulation models. Journal of Climate, 14(17), 3767-3784.

Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191-219.

Schmidt, G. A.; Shindell, D. T.; & Tsigaridis, K. (2014). Reconciling warming trends. Nature Geoscience, 7(3), 158-160.

Schneider, D. P.; Ammann, C. M.; Otto‐Bliesner, B. L.; & Kaufman, D. S. (2009). Climate response to large, high‐latitude and low‐latitude volcanic eruptions in the Community Climate System Model. Journal of Geophysical Research: Atmospheres, 114, D15. doi: 10.1029/2008JD011222.

Settle, M. (1978). Volcanic eruption clouds and the thermal power output of explosive eruptions. Journal of Volcanology and Geothermal Research, 3(3), 309-324.

Shindell, D. T.; Schmidt, G. A.; Mann, M. E.; Rind, D.; & Waple, A. (2001). Solar forcing of regional climate change during the Maunder Minimum. Science, 294(5549), 2149-2152.

Smithsonian Institution. (2017). Database search on volcanoes of the world and their eruptions. Smithsonian Institution http://volcano.si.edu/search_eruption.cfm.

Sutton, A. J.; McGee, K. A.; Casadevall, T. J.; & Stokes, B. (1992). Fundamental Volcanic-Gas-Study Techniques: An Integrated Approach to Monitoring. In: Monitoring Volcanoes: Techniques and Strategies used by the staff of the Cascades Volcano Observatory, 181(1966), 1980-90.

Trigo, R. M.; Vaquero, J. M.; Alcoforado, M. J.; Barriendos, M.; Taborda, J.; García‐Herrera, R.; & Luterbacher, J. (2009). Iberia in 1816, the year without a summer. Intern. J. Climatology, 29(1), 99-115.

Wanner, H.; Solomina, O.; Grosjean, M.; Ritz, S. P.; & Jetel, M. (2011). Structure and origin of Holocene cold events. Quaternary Science Reviews, 30(21), 3109-3123. doi: 10.1016/j.quascirev.2011.07.010.

Wegmann, M.; Brönnimann, S.; Bhend, J.; Franke, J.; Folini, D.; Wild, M.; & Luterbacher, J. (2014). Volcanic influence on European summer precipitation through monsoons: possible cause for “Years without Summer”*. Journal of Climate, 27(10), 3683-3691. doi: 10.1175/JCLI-D-13-00524.1.

Wood, G. D. A. (2014). Tambora: the eruption that changed the world. Princeton University Press.

Yan, H.; Wei, W.; Soon, W.; An, Z.; Zhou, W.; Liu, Z.; ... & Carter, R. M. (2015). Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nature Geoscience, 8(4), 315-320.

Zhong, Y.; Miller, G. H.; Otto-Bliesner, B. L.; Holland, M. M.; Bailey, D. A.; Schneider, D. P.; & Geirsdottir, A. (2011).

Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Climate Dynamics, 37(11-12), 2373-2387. doi: 10.1007/s00382-010-0967-z.

Terrae Didatica utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Descargas

Los datos de descargas todavía no están disponibles.