Banner Portal
Paleotemperatura
PDF

Palavras-chave

Razão Mg/Ca
Isótopos
Oxigênio 18
Proxy

Como Citar

ZARDIN, Tamires Nunes. Paleotemperatura: os principais proxies baseados em foraminíferos planctônicos. Terrae Didatica, Campinas, SP, v. 17, n. 00, p. e021047, 2021. DOI: 10.20396/td.v17i00.8667166. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8667166. Acesso em: 26 abr. 2024.

Resumo

Este artigo é uma síntese sobre os principais proxies de paleotemperatura baseados nas carapaças de foraminíferos planctônicos: δ18O, razão Mg/Ca e funções de transferência. Estes organismos unicelulares surgiram no Jurássico. São marinhos, eucariontes, heterótrofos, de hábito planctônico e podem ou não ser portadores de simbiontes fotossintetizantes. Os foraminíferos planctônicos secretam uma carapaça ao longo da vida, composta de calcita; durante sua síntese são incorporados elementos/assinaturas químicas presentes no ambiente, carregando consigo sinais ambientais relacionados às mudanças climáticas, pH e salinidade. As testas têm um excelente potencial de preservação no assoalho oceânico. O uso desses microfósseis, encontrados no registro sedimentar, cria um leque de possibilidades na obtenção de dados paleoceanográficos de várias zonas oceânicas, como o uso em proxies geoquímicos (δ18O, razão Mg/Ca) e nas funções de transferência. A aplicabilidade desses proxies, como também fatores bióticos e abióticos que podem influenciar as estimativas finais, são abordados na revisão.

https://doi.org/10.20396/td.v17i00.8667166
PDF

Referências

Anand, P., & Elderfield, H. (2005). Variability of Mg/Ca and Sr/Ca between and within the planktonic foraminifers Globigerina bulloides and Globorotalia truncatulinoides. Geochemistry, Geophysics, and Geosystems, 6 (11), 1-15. doi: 10.1029/2004GC000811.

Anand, P., Elderfield, H., & Conte, M. H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time-series. Paleoceanography, 18(2), 1050. doi:10.1029/2002PA000846.

Anderson, D. M., & Archer, D. (2002). Glacial-interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature, 416, 70-73.

Anjos-Zerfass, G. S., & Andrade, E. J. (2008). Foraminíferos e Bioestratigrafia: uma abordagem didática. Terræ Didatica, 3(1), 18-35. doi: 10.20396/td.v3i1.8637474.

Barker, S., & Elderfield, H. (2002). Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science, 297, 833-836.

Bassinot, F. C., Melieres, F., & Labeyrie, L. (2004). Crystallinity of foraminifera shells: A proxy to reconstruct past bottom water CO3 changes? Geochemistry, Geophysics, and Geosystems, 5(8), 12. doi:10.1029/2003GC000668.

Bè, A. W. H. (1977). An ecological, oceanographic, and taxonomic review of Recent planktonic foraminifera. In: Ramsay, A. T. S. (ed.), Oceanic Micropaleontology: Academic Press, London, 1-100.

Benway, H. M., Haley, B. A., Klinkhammer, G. P., & Mix, A. C. (2003). Adaptation of a flowthrough leaching procedure for Mg/Ca palaeothermometry. Geochemistry, Geophysics, and Geosystems, 4(2), 1-15.

Berger, W. H. (1970). Planktonic foraminifera: Selective solution and the lysocline. Marine Geology, 8, 111-138.

Bijma, J., Spero, H.J., & Lea, D.W. (1999). Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer. p. 489-512.

Billups, K., & Spero, H.J. (1995). Relationship between shell size, thickness and stable isotopes in individual planktonic Foraminifera from two equatorial Atlantic cores. J foraminifer Res, 25, 24-37.

Boltovskoy, E. (1965). Los Foraminiferos Recientes. Buenos Aires: Eudeba. 510 p.

Broecker, W. S. (2002). The glacial world according to Wally. New York, Eldigo Press. 358 p.

Broecker, W. S., & Peng, T.-H. (1982). Tracers in the Sea. Palisades, NY, Eldigio Press, Lamont Doherty Geological Observatory. 690p.

Brown, S. J., & Elderfield, H. (1996). Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by post depositional dissolution: Evidence of shallow Mg-dependent dissolution. Paleoceanography, 11, 543-551.

Burke, J., Renema, W., Henehan, M. J., Elder, L. E., Davis, C. V., Maas, A. E., Foster, G. L., Schiebel, R., & Hull, P. M. (2018). Factors influencing porosity in planktonic foraminifera, Pangaea, doi: 10.1594/PANGAEA.890092.

Burman, J., Gustafsson, O., Segl, M., & Schmitz, B. (2005). A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates. Rapid Communications in Mass Spectrometry, 19, 3086-3088.

CLIMAP Project Members (1976). The surface of the ice-age Earth. Science, 191, 1131-1137.

Curry, W. B., & Marchitto, T. M. (2005). A SIMS calibration of benthic foraminiferal Mg/Ca. EOS, Transactions, of American Geophysical Union, Fall Meeting, 86(52), PP51A-0583.

De Villiers, S., Greaves, M., & Elderfield, H. (2002). An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-OES. Geochemistry, Geophysics, and Geosystems, 3, 1-14.

Dekens, P. S., Lea, D.W., Pak, D. K., & Spero, H. J. (2002). Core top calibration of Mg/Ca in tropical foraminifera: Refining paleo-temperature estimation. Geochemistry, Geophysics, and Geosystems, 3(4), 1-29.

Dissard, D., Reichart, G. J., Menkes, C., Mangeas, M., Frickenhaus, S., & Bijma, J. (2020). Mg/Ca, Sr/Ca and stable isotope from planktonic foraminifera T. sacculifer: testing a multi-proxy approach for inferring paleo-temperature and paleo-salinity. Biogeosciences Discuss., 1-38. doi: 10.5194/bg-2020-208.

Duplessy, J.C., Bé, A.W.H., & Blanc, P.L. (1981). Oxygen and carbon isotopic composition and biogeographic distribution of planktonic Foraminifera in the Indian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 33, 9-46.

Eggins, S., De Deckker, P., & Marshall, J. (2003). Mg/Ca variation in planktonic foraminifera tests: Implications for reconstructing palaeo-seawater temperature and habitat migration. Earth Planetary Science Letters, 212, 291-306.

Eggins, S.M., Sadekov, A., & De Deckker, P. (2004). Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: a complication for seawater thermometry? Earth Planet. Sci. Lett., 225, 411-419. doi: 10.1016%2Fj.epsl.2004.06.019

Elderfield, H., & Ganssen, G. (2000). Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature, 405, 442-445.

Elderfield, H., Vautravers, M., & Cooper, M. (2002). The relationship between shell size and Mg/Ca, Sr/Ca, δ 18O, and δ 13C of species of planktonic foraminifera. Geochem. Geophys. Geosyst. 3., 1-13. doi: 10.1029/2001GC000194

Emiliani, C. (1955). Pleistocene temperatures. Journal of Geology, 63, 538-578.

Epstein, S., Buchsbaum, R., Lowenstam, H.A., & Urey, H.C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64,1315-1325.

Epstein, S., Mayeda, T. (1953). Variation of O-18 content of water from natural sources. Geochimica et Cosmochimica Acta, 4, 213-224.

Ericson, D. B., & Wollin, G. (1968). Pleistocene climates and chronology in deep-sea sediments. Science, 162,1227,1-34.

Ezard, T.H.G., Edgar, K.M., & Hull, P.M. (2015). Environmental and biological controls on size-specific δ 13C and δ 18O in recent planktonic Foraminifera. Paleoceanography, 30, 151-173. doi: 10.1002/2014PA002735

Faure, G. (1986). Principles of isotope geology. John Wiley & Sons, New York, NY. 589p.

Friedrich, O., Schiebel, R., Wilson, P.A., Weldeab, S., Beer, C.J., Cooper, M.J., & Fiebig, J. (2012). Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifers. Earth Planet Sci. Letters, 319-320,133-145. doi: 10.1016/j.epsl.2011.12.002.

Furbish, D. J., & Arnold, A. J. (1997). Hydrodynamic strategies in the morphological evolution of spinose planktonic foraminifera. Geological Society of America Bulletin, 109, 1055-1072.

Gradstein, F., Ogg, J., Schmitz, M., & Ogg, G. (2012). The Geologic Time Scale. v. 2, 5.ed. Elsevier, Oxford, UK, 1176 p.

Greaves, M., Caillon, N., et al. (2008). Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry, Geophyics, Geosystems, v. 9, Q08010, 1-27. doi: 10.1029/2008GC001974

Guiot J., & De Vernal A. (2007). Transfer functions: methods for qualitative paleoceanography based on microfossils. In: C. Hillarie-Marcel & A. De Vernal. eds. (2007). Proxies in Late Cenozoic Paleoceanography. Elsevier. p. 523-562. (Developments in Marine Geology, v. 1).

Guiot, J. (2011). Transfer functions. IOP Conference Series: Earth and Environmental. Science, 14, 012008, 1-7. doi: 10.1088/1755-1315/14/1/012008/

Hale, W., & Pflaumann, U. (1999). Sea-Surface Temperature Estimations Using a Modern Analog Technique with Foraminiferal Assemblages from Western Atlantic Quaternary Sediments. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer.

Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., & Rohling, E. J. (2005). Glacial Mediterranean Sea surface temperatures based on planktonic foraminiferal assemblages. Quaternary Science Reviews, 24, 999-1016.

Hemleben, C., Spindler, M., & Anderson, O. R. (1989). Modern planktonic foraminifera. New York, NY, Springer-Verlag. 363p.

Hillaire-Marcel C., de Vernal A., Polyak L., & Darby D. (2004). Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sediments-implications for the Holocene paleoceanography of the western Arctic. Quat Sci Rev, 23, 245-260.

Hillaire-Marcel, C., de Vernal, A. (2007). Methods in Late Cenozoic Paleoceanography: Introduction. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1, Developments in Marine Geology. Amsterdam, Boston Elsevier, 1-15.

Holbourn, A.E., Kuhnt, W., Clemens, S.C., Kochhann, K. G. D., Jöhnck, J., Lübbers, J., & Andersen, N. (2018). Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications, 9, 1584, 1-13. doi: 10.1038/s41467-018-03950-1

Hsiang, A.Y., Elder, L.E., & Hull, P.M. (2016). Towards a morphological metric of assemblage dynamics in the fossil record: a test case using planktonic foraminifera. Philosophical Transactions B, 371, 1-24. doi: 10.1098/rstb.2015.0227

Huang, K.-F., You, C.-F., Lin, H.-L., & Shieh, Y.-T. (2008). In situ calibration of Mg/Ca ratio in planktonic foraminiferal shell using time series sediment trap: a case study of intense dissolution artifact in the South China Sea. Geochemistry, Geophysics, Geosystems, 9, 1-20. doi: 10.1029/2007GC001660.

Hut, G. (1987). Consultants' group meeting on stable isotope reference samples for geochemical and hydrological investigations. International Atomic Energy Agency, 18, 1-42.

Hutson, W. H. (1980). The Agulhas Current During the Late Pleistocene: Analysis of Modern Faunal Analogs. Science, 207 (4426), 64-66. doi: 10.1126/science.207.4426.64.

Imbrie, J., & Kipp, N. G. (1971). A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core. In: Turekian, K. K. (1971). The Late Cenozoic Glacial Ages. New Haven, Yale University Press. p. 71-181.

Ivanova, E., Schiebel, R., Singh, A. D., Schmiedl, G., Niebler, H.-S., & Hemleben, C. (2003). Primary production in the Arabian Sea during the last 135,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 197, 61-82. doi: 10.1016/S0031-0182(03)00386-9.

Katz, M. E., Cramer, B. S., Franzese, A., Honisch, B., Miller, K. G., Rosenthal, Y., & Wright, J. D. (2010). Traditional and emerging geochemical proxies in foraminifera. The Journal of Foraminiferal Research, 40 (2), 165-192. doi: 10.2113/gsjfr.40.2.165

Kisakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D., & Erez, J. (2008). Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett, 273, 260-269.

Köhler-Rink, S., & Kühl, M. (2005). The chemical microenvironment of the symbiotic planktonic foraminifer Orbulina universa. Marine Biology Research, 1, 68-78. doi: 10.1080/17451000510019015.

Kucera, M. (2007). Planktonic Foraminifera as Tracers of Past Oceanic Environments. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1, Developments in Marine Geology. Amsterdam, Boston Elsevier, 213-262. doi: 10.1016/S1572-5480(07)01011-1.

Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., & Waelbroeck, C. (2005). Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration datasets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews, 24, 951-998. doi: 10.1016/j.quascirev.2004.07.014

Langen, P. J. v., Pak, D. K., Spero, H. J., & Lea, D. W. (2005). Effects of temperature on Mg/Ca in neogloboquadrinid shells determined by live culturing. Geochemistry, Geophysics, and Geosystems, 6, 1-11. doi: 10.1029/2005GC000989

Lea, D. W. (1999). Trace elements in foraminiferal calcite. In: Sen Gupta, B. K. (Ed.) (1999). Modern Foraminifera. Dordrecht, Klüwer Academic Publ. p. 259-277. doi: 10.1007/0-306-48104-9_15

Lea D. W. (2003). Elemental and isotopic proxies of past ocean temperatures. In: Holland, H. D., Turekian, K. K. (Eds.) Treatise on geochemistry. Elsevier-Pergamon, Oxford, p 365-390

Lea, D. W., & Martin, P. A. (1996). A rapid mass spectrometric method for the analysis of barium, cadmium, and strontium in foraminifera shells. Geochimica et Cosmochimica Acta, 60, 3143-3149.

Lea, D. W., Bijma, J., Spero, H. J., & Archer, D. (1999). Implications of a Carbonate Ion Effect on Shell Carbon and Oxygen Isotopes for Glacial Ocean Conditions. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer.

Lea, D. W., Martin, P., Chan, D.A., & Spero, H.J. (1995). Calcium uptake and calcification rate in the planktonic foraminifer Orbulina universa. Journal of Foraminifera Research, 25, 14-23.

Lisiecki L.E., & Raymo M., E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, 1-17. doi: 10.1029/2004PA001071

Lisiecki, L. E., & Stern, J. V. (2016). Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanography, 31, 1368-1394. doi: 10.1002/2016PA003002

Lombard, F., Erez, J., Michel, E., & Labeyrie, L. (2010). Temperature effect on respiration and photosynthesis of the symbiont-bearing planktonic Foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera. Limnol. Oceanogr., 54, 210-218.

McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18, 849-857.

McKenna, V. M., & Prell, W. L. (2005). Calibration of the Mg/Ca of Globorotalia truncatulinoides (R) for the reconstruction of marine temperature gradients. Paleoceanography, 19, 1-12. doi: 10.1029/2000PA000604

Morey, A. E., Mix, A. C., & Pisias, N. G. (2005). Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environmental variables. Quaternary Science Reviews, 24, 925-950.

Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., & Wefer, G. (2003). Temperature: Delta O-18 relationships of planktonic foraminifera collected from surface waters. Palaeogeography, Palaeoclimatology, Palaeoecology, 202, 143-152. doi: 10.1016/S0031-0182(03)00633-3.

Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., & Stefan Niebler, H., 1997. Planktonic foraminifera as recorders of past surface-water stratification. Geology, 25(4), 335-338. doi: 10.1130/0091-7613(1997)025%3C0335:PFAROP%3E2.3.CO;2

Niebler, H. S., Hubberten, H. W., & Gersonde, R. (1999). Oxygen Isotope Values of Planktic Foraminifera: A Tool for the Reconstruction of Surface Water Stratification. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer.

Nürnberg, D., Bijma, J., & Hemleben, C. (1996). Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature: Geochimica et Cosmochimica Acta, 60, 803-814.

Paul A., Mulitza S., Pätzold J., & Wolff T. (1999). Simulation of Oxygen Isotopes in a Global Ocean Model. In: Fischer, G., & Wefer, G. (Eds.) (1999). Use of Proxies in Paleoceanography. Berlin, Heidelberg, Springer. doi: 10.1007/978-3-642-58646-0_27

Peterson, L. C., & Prell, W. L. (1985). Carbonate dissolution in recent sediments of the Eastern Equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline. Marine Geology, 64, 259-290.

Ravelo, A., & Hillaire-Marcel, C. (2007). Chapter Eighteen: The Use of Oxygen and Carbon Isotopes of Foraminifera in Paleoceanography. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1. Developments in Marine Geology. 1. doi: 10.1016/S1572-5480(07)01023-8

Regenberg, M., Steph, S., Nürnberg, D., Tiedemann, R., & Garbe-Schönberg, D. (2009). Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ18O-calcification temperatures: Paleothermometry for the upper water column. Earth and Planetary Science Letters, 278 (3-4), 324-336. doi: 10.1016/j.epsl.2008.12.019.

Rohling, E.J., & Cooke, S. (1999). Stable oxygen and carbon isotopes in foraminiferal carbonate shells. In: Sen Gupta, B. K. (Ed.) (1999). Modern Foraminifera. Dordrecht, Klüwer Academic Publ. p. 239-258.

Rosenthal, Y. (2007). Elemental Proxies for Reconstructing Cenozoic Seawater Paleotemperatures from Calcareous Fossils. In: Hillaire-Marcel, C., de Vernal, A. Proxies in Late Cenozoic paleoceanography, vol. 1, Developments in Marine Geology. Amsterdam, Boston Elsevier, 717-734.

Rosenthal, Y., & Boyle, E. A. (1993). Factors controlling the fluoride content of planktonic foraminifera: an evaluation of its paleoceanographic applicability. Geochimica et Cosmochimica Acta, 57, 335-346.

Russell, A. D., Hoenisch, B., Spero, H. J., & Lea, D. W. (2004). Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 68, 4347-4361.

Sachs, H. M., Webb, T., III, & Clark, D. R. (1977). Paleoecological transfer functions. Annual Review of Earth and Planetary Sciences, 5, 159-178.

Schiebel, R. (2002). Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochemical Cycles, 16, 1-21. doi: 10.1029/2001GB001459.

Schiebel, R., & Hemleben, C. (2005). Modern planktic foraminifera. Paläontologische Zeitschrift. 79(1), 135-148. doi: 10.1007/BF03021758.

Schiebel, R., & Hemleben, C. (2017). Planktic Foraminifers in the Modern Ocean. Berlin, Heidelberg, Springer-Verlag. 358p. doi: 10.1007/978-3-662-50297-6.

Schiebel, R., Hiller, B., & Hemleben, C. (1995). Impacts of storms on Recent planktic foraminiferal test production and CaCO3 flux in the North Atlantic at 47 degrees N, 20 degrees W (JGOFS). Marine Micropaleontology, 26, 115-129.

Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., & Thierstein, H. R. (2004). Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Marine Micropaleontology, 50, 319-338.

Schott, W. (1935). Die Foraminiferen in den Aquatorialen Teil des Atlantischen Ozeans. Dtsch. Atl. Exped. 3, 43-134.

Sen Gupta, B. K. (1999). Systematics of Modern Foraminifera. In: Sen Gupta, B. K. (Ed.) (1999). Modern Foraminifera. Dordrecht, Klüwer Academic Publ. p. 7-36.

Spero, H. J., Bijma, J., Lea, D. W., & Bemis, B. E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390, 497-500.

Spero, H.J., Eggins, S.M., Russell, A.D., Vetter, L., Kilburn, M.R., & Hönisch, B. (2015). Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer. Earth Planet. Sci. Letters, 409, 32-42. doi: 10.1016/j.epsl.2014.10.030.

Spero, H.J., Lea, D.W. (1996). Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Marine Micropaleontology, 28, 231-246.

Steinke, S., Chiu, H. -Y., Yu, P. -S., Shen, C. -C., Lowemark, L., Mii, H. -S., & Chen, M. -T. (2005). Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions. Geochemistry, Geophysics, and Geosystems, 6, 13. doi: 10.1029/2005GC000926.

Takahashi, K., & Bè, A. W. H. (1984). Planktonic foraminifera: Factors controlling sinking speeds. Deep Sea Research, 31, 1477-1500.

Thiede, J. (1978). A glacial Mediterranean. Nature, 276, 680-683.

Thunell, R. C., & Honjo, S. (1981). Calcite dissolution and the modification of planktic foraminiferal assemblages. Marine Micropaleontology, 6, 169-182.

Thunell, R.C. (1979). Eastern Mediterranean Sea during the last glacial maximum; an 18,000-years B.P. reconstruction. Quaternary Research, 11, 353-372.

Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562-581.

Wara, M. W., Delaney, M. L., Bullen, T. D., & Ravelo, A. C. (2003). Application of a radially viewed inductively coupled plasma-optical emission spectrophotometry to simultaneous measurement of Mg/Ca, Sr/Ca, and Mn/Ca ratios in marine biogenic carbonates. Geochemistry, Geophysics, and Geosystems, 4 (8), 1-14. doi: 10.1029/2003GC000525.

Yu, J., Day, J., Greaves, M., & Elderfield, H. (2005). Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochemistry, Geophysics, and Geosystems, 6(8), 9. doi: 10.1029/2005GC000964.

Zeebe, R.E., Bijma, J., & Wolf-Gladrow, D.A. (1999). A diffusion-reaction model of carbon isotope fractionation in Foraminifera. Marine Chemistry, 64, 199-227.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Terrae Didatica

Downloads

Não há dados estatísticos.