Resumo
Neste artigo apresentam-se alguns resultados de um estudo centrado nas ideias intuitivas de independência de alunos do 9º ano de escolaridade. Participaram no estudo 310 alunos, do 9º ano, a quem foi aplicado um questionário com várias questões sobre probabilidade condicionada e independência, sendo aqui apenas exploradas as duas que envolvem independência. Em termos de resultados, salienta-se que as resoluções dos alunos revelam que estes possuem ideias intuitivas sobre o conceito de independência nos contextos estudados.
Referências
AHLGREN, A.; GARFIELD, J. Analysis of the Probability Curriculum. In: KAPADIA, R.;BOROVCNIK, M. G. (Ed.). Chance encounters: probability in education. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991. p. 107-134.
BOROVCNIK, M. G.; KAPADIA, R. Research and developments in probability education internationally. In: JOUBERT, M.; ANDREWS, P. (Ed.). Proceedings of the British Congress for Mathematics Education. 2010. p. 41-48. Disponível em http://www.bsrlm.org.uk/IPs/ip30-1/BSRLM-IP-30-1-06.pdf. Acesso em: 12 fev. 2012.
BOROVCNIK, M.; PEARD, R. Probability. In: BISHOP, A. J. et al. (Ed.). International handbook of mathematics education. Dordrecht: Kluwer Academic Publishers, 1996. p. 239-287.
FALK, R.; FALK, R.; LEVIN, I. A potential for learning probability in young children. Educational Studies in Mathematics,Dordrecht, v. 11, p. 181-204, 1980.
FERNANDES, J. A. Concepções erradas na aprendizagem de conceitos probabilísticos. Dissertação (Mestrado em Informática no Ensino) – Universidade do Minho, Braga, Portugal, 1990.
FERNANDES, J. A. Intuições e aprendizagem de probabilidades: uma proposta de ensino de probabilidades no 9o ano de escolaridade. Tese (Doutorado em Metodologia do Ensino da Matemática) – Universidade do Minho, Braga, Portugal, 1999.
FISCHBEIN, E. The intuitive sources of probabilistic thinking in children. Dordrecht: D. Reidel, 1975.
FISCHBEIN, E; NELLO, M. S.; MARINO, M. S. Factors affecting probabilistic judgments in children and adolescents. Educational Studies in Mathematics, Dordrecht, v. 22, p. 523-549, 1980.
FISCHBEIN, E.; SCHNARCH, D. The evolution with age of probabilistic intuitively based misconceptions. Journal for Research in Mathematics Education, Reston, v. 28, n. 1, p. 96-105, 1997.
GAL, I. Towards “probability literacy” for all citizens: building blocks and instructional dilemas. In: JONES, G. (Ed.). Exploring probability in schools: challenges for teaching and learning. New York, NY: Springer, 2005. p. 39-63.
GARFIELD, J.; AHLGREN, A. Difficulties in learning basic concepts in probability and statistics: Implications for research. Journal for Research in Mathematics Education, Reston, v. 19, n. 1, p. 44-63, 1988.
GREEN, D. R. A survey of probability concepts in 3000 pupils aged 11-16 years. In: GREY, D. R.et al. (Ed.). Proceedings of the First International Conference on Teaching Statistics. Sheffield, UK: Teaching Statistics Trust, 1983. p. 766-783.
HAWKINS, A.; JOLLIFFE, F.; GLICKMAN, L. Teaching Statistical Concepts. Harlow, UK: Longman, 1992.
JONES, G. A. et al. Students’ probabilistic thinking in instruction. Journal for Research in Mathematics Education,Reston, v. 30, n. 5, p. 487-519, 1999.
KAHNEMAN, D.; TVERSKY, A. Subjective probability: A judgment of representativeness. In: KAHNEMAN, D.; SLOVIC, P.; TVERSKY, A. (Ed.). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press, 1982. p. 32-47.
KELLY, I. W.; ZWIERS, F. W. Mutually exclusive and independence: Unravelling basic misconceptions in probability theory. In: DAVIDSON, R.; SWIFT, J. (Ed.). The Proceedings of the Second International Conference on Teaching Statistics. Victoria B.C.: University of Victoria, 1988.
KONOLD, C. et al. Inconsistencies in students’ reasoning about probability. Journal for Research in Mathematics Education, Reston, VA, v. 24, n. 5, p. 392-414, 1993.
LECOUTRE, M.; DURAND, J. Jugements probabilistes et modèles cognitifs: étude d’une situation aléatoire. Educational Studies in Mathematics, Dordrecht, v. 19, n. 3, p. 357-368, 1988.
NCTM. Principios y Estándares para la Educación Matemática. Sevilla: Sociedad Andaluza de Educación Matemática Thales, 2003.
PORTUGAL. Ministério da Educação. Programa ajustado de Matemática do ensino básico. Lisboa: Ministério da Educação, 2007.
SHAUGHNESSY, J. M. Research in probability and statistics: Reflections and directions. In: GROUWS, D. A. (Ed.). Handbook of research on mathematics teaching and learning. New York: Macmillan, 1992. p. 465-494.
STAVY, R.; TIROSH, D. How studentes (mis-)understand science and mathematics: intuitive rules. New York: Teachers College Press, 2000.
TARR, J. E. Using middle school students’ thinking in conditional probability and independence to inform instruction. (Doctoral dissertation, Illinois State University, 1997). Dissertation Abstracts International – University Microfilms International (UMI) ProQuest, Ann Arbor,n. 49, Z5055, 1997.
TARR, J. E.; JONES, G. A. A framework for assessing middle school students’ thinking in conditional probability and independence. Mathematics Education Research Journal, Dordrecht, v. 9, n. 1, p. 39-59, 1997.
TARR, J. E.; LANNIN, J. K. How can teachers build notions of conditional probability and independence? In: JONES, G. A. (Ed.). Exploring probability in school: challenges for teaching and learning. New York, NY: Springer, 2005. p. 215-238.
WATSON, J. M. Conditional probability: its place in the mathematics curriculum. Mathematics Teacher, Reston, v. 88, n. 1, p. 12-17, 1995.
WATSON, J. M. The probabilistic reasoning of middle school students. In: JONES, G. A. (Ed.). Exploring probability in school: Challenges for teaching and learning. New York, NY: Springer, 2005. p. 145-169.
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2014 Zetetiké: Revista de Educação Matemática