Leites A1 e A2: revisão sobre seus potenciais efeitos no trato digestório

Palavras-chave: Leite A2. β-casomorfina-7. Síndrome de intolerância ao leite.

Resumo

O leite de vaca é o mais consumido no Brasil e na maioria dos outros países. Neste produto a β-caseína representa aproximadamente 30% do total de proteínas, podendo esta estar presente como duas diferentes variantes de acordo com a genética do animal: β-caseína A1 e A2. O peptídeo opioide β-casomorfina-7 (BCM-7) pode ser liberado durante a digestão da β-caseína A1, no entanto sua liberação durante a digestão da β-caseína A2 é pequena à inexistente. Este artigo tem como objetivo discutir o potencial efeito do consumo das variantes genéticas A1 e A2 da β-caseína sobre o trato digestório. Existe um corpo de evidências apontando para a presença BCM-7 como responsável pela síndrome de intolerância ao leite não relacionada com a lactose, com efeitos sobre motilidade gastrintestinal e ação pró-inflamatória. Dada a complexidade das reações bioquímicas e fisiológica que se observam no ambiente intestinal é razoável esperar que os sintomas, quando presentes, irão variar dependendo da sensibilidade interpessoal. A avaliação do consumo de leite A2 como alternativa dietética entre indivíduos que reportam desconforto gastrointestinal por consumo de leite de vaca (não associado à lactose) é recomendável tendo em vista a importância que os lácteos representam no aporte de nutrientes fundamentais à saúde humana.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marina Gomes Barbosa, Universidade Estadual de Campinas
Graduanda em Nutrição Universidade Estadual de Campinas.
Alisson Borges Souza, Universidade Estadual de Campinas
Doutorando em Ciência de Alimentos Universidade Estadual de Campinas.
Guilherme Miranda Tavares, Universidade Estadual de Campinas
Professor Doutor I da Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas.
Adriane Elisabete Costa Antunes, Universidade Estadual de Campinas
Docente da Faculdade de Ciências Aplicada da Universidade Estadual de Campinas.

Referências

Penna ALB, Almeida KE, Oliveira WN. Soro de leite: Importância biológica, comercial e industrial— Principais produtos. In: Oliveira WN, Tecnologia de Produtos Lácteos Funcionais. São Paulo:Atheneu; 2009.

Pereira DBC, Silva PHF, Carvalho AF, Antunes AEC, Cruz, AG, Zacarchenco PB, Silva MC. Proteínas. In: Cruz AG, Zacarchenco PB, Oliveira CAF, Corassin CH. Química, bioquímica, análise sensorial e nutrição no processamento de leite e derivados. São Paulo: Elsevier; 2016.

Brooke-Taylor S, Dwyer K, Woodford K, Kost N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-Casein. Advances in Nutrition. 2017; 8:739-48.http://hdl.handle.net/10536/DRO/DU:30109253

De Noni RJ, FitzGerrald HJT, Korhonen Y, Le Roux CT, Livesey I, Thorsdottir D, Tomé RW. Scientific Report of EFSA prepared by a Datex Working Group on the potential health impact of β-casomorphins and related peptides. EFSA Science Report. 2009; 231:1 – 107.

Mansour A., Hoversten M.T., Taylor L.P., Watson S.J., Huda Akil W. The cloned μ, and receptors and their endogenous ligands: Evidence for two opioid peptide recognition cores. Brain Research.700:89-98, 1995.

Pal, S, Woodford, K, Kukuljan S, Ho S. Milk intolerance, beta-casein and lactose. Nutrients. 2015; 7:7285–297.

Ng-Kwai-Hang KF, Grosclaude F. Genetic polymorphism of milk proteins. In: Fox PF, McSweeney PLH (eds). Advanced Dairy Chemistry: Volume 1: Proteins, Parts A & B. Kluwer Academic/Plenum. Publishers: New York, 2002, pp 739 – 816.

Nilsen, H., Olsen, H. G., Hayes, B., Sehested, E., Svendsen, M., Nome, T., Meuwissen, T., & Lien, S. (2009). Casein haplotypes and their associations with milk production traits in Norwegian Red cattle. Genetics, Selection, Evolution., 41(24), 1-12.

Clarke, A. & Trivedi, M. (2014). Bovine Beta Casein Variants: Implications to Human Nutrition and Health. International Proceedings of Chemical, Biological and Environmental Engineering, 67: 11-17.

Trivedi MS, Shah JS, Al-Mughairy S, Hodgson NW, Simms B, Trooskens GA, Van Criekinge W, Deth RC. Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. J Nutr Biochem 2014; 25: 1011-8.

Regitano, L. C. A.; Coutinho, L. L. Biologia molecular aplicada à produção animal. Brasília, DF: EMBRAPA, 213 p. 2001.

Kamiński S, Cieślińska A, Kostyra E, 2007. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genetics; 48: 189-98.

Clemens, R.A. Milk A1 and A2 peptides and diabetes. Nestle Nutr. Workshop Ser Pediatr Program. 2011.

Lima, T. C. C. (2014). Polimorfismo no gene da beta-casein em rebanhos zebuínos leiteiros no estado do Rio Grande do Norte (Dissertação de mestrado). Universidade Federal do Rio Grande do Norte, Natal.

Rangel, A.H.N.; Zaros, L.G. ; Lima, T.C. ; Borba, L.H.F.; Novaes, L.P.; Mota, L.F.M. and Silva, M.S. Polymorphism in the Beta Casein Gene andanalysisofmilkcharacteristics in GirandGuzerádairycattle. Genetics and Molecular Research 16 (2): gmr16029592

Boutrou R, Gaudichon C, Dupont D, Jardin J, Airinei G, Marsset-Baglieri A, Benamouzig R, Tomé D, Leonil J. Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. American Journal Clinical Nutrition. 2013; 97:1314–23.

Lebrun I. Peptídeos bioativos derivados do leite e suas ações no sistema nervoso central. In: Antunes AEC, PACHECO MTB. Leite para adultos: mitos e fatos frente à ciência. São Paulo:Varela; 2009.

De Noni I. Release of β-casomorphins 5 and 7 during simulated gastrointestinal digestion of bovine β-casein variants and milk-based infant formulas. Food Chemistry. 2008; 110:897–903.

De Noni I, Cattaneo S. Occurrence of b-casomorphins 5 and 7 in commercial dairy products and in their digests following in vitro simulated gastro-intestinal digestion. Food Chemistry. 2010;119:560–6.

Nguyen DD, Solah VA, Johnson SK, Charrois JW, Busetti F. Isotope dilution liquid chromatography-tandem mass spectrometry for simultaneous identification and qualification of bata-casomorphin 7 in yoghurt. Food Chemistry. 2014; 146:345–52.

Hamosh M, Hong H, Hamosh P. Beta-casomorphins: milk-β-casein derived opioid peptides. In: Lebenthal E. Textbook of Gastroenterology and Nutrition in Infancy. New York:Raven Press; 1989.

Koch G, Wiedemann K, Teschemacher H. Opioid activities of human beta-casomorphins. Europe Journal Pharmacology. 1985; 106:213-14.

Wada Y, Lonnerdal B. Bioactive peptides released from in vitro digestion of human milk with or without pasteurization. Pediatric Research. 2015; 77:546-53.

Jarmolowska B, Sidor K, Iwan M, Bielikowicz K, Kaczmarski M, Kostyra E, Kostrya H. Changes of β-casomorphin content in human milk during lactation. Peptides. 2007; 28:1982-86.

Jinsmaa Y, Yoshikawa M. Enzymatic release of neocasomorphin and β-casomorphin from bovine beta-casein. Peptides. 1999; 20:957-62.

Pleuvry BJ. Opioid receptors and their ligands: Natural and unnatural. British Journal of Anaesthesia. 1991; 66:370-80.

Greenwood-Van MB, Gardner CJ, Little PJ, Hicks GA, Dehaven-Hudkins, DL. Preclinical studies of opioids and opioid antagonists on gastrointestinal function. Neurogastroenterology Motility. 2004; 16:46-53.

Ward SJ, Takemori AE. Relative involvement of receptor subtypes in opioid-induced inhibition of gastrointestinal transit in mice. Journal Pharmacology and Experimental Therapeutics. 1983; 224:359-63.

Zoghbi S, Trompette A, Claustre J, El Homsi M, Garzon J, Jourdan G, Scoazec JY, Plaisancié P. β-casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway. American Journal Physiology Gastrointestinal Liver Physiology. 2006; 290:1105-13.

Gonenne J, Camilleri M, Ferber I, Burton D, Baxter K, Keyashian K, Foss J, Wallin B, Du W, Zinsmeister A. Effect of alvimopan and codeine on gastrointestinal transit: A randomized controlled study. Cinical Gastroenterology and Hepatology. 2005; 3:784-91.

UlHaq MR, Kapila R, Sharma R, Saliganti V, Kapila, S. Comparative evaluation of cow beta-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Europe Journal of Nutrition. 2014; 53:1039-49.

Barnett MP, McNabb WC, Roy NC, Woodford KB, Clarke AJ. Dietary A1 β-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 β-casein in Wistar rats. Journal Food Science Nutrition. 2014; 65:720-27.

Cieslinska A, Kostyra E, Kostyra H, Olenski K, Fiedorowicz E, Kaminski S. Milk from cows of different beta-casein genotypes as a source of beta-casomorphin-7. International Food Science Nutrition. 2012;63:426-30.

UlHaq MR, Kapila R, Kapila S. Release of β-casomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from Indian crossbred cattle (Karan Fries). Food Chemistry. 2015;168:70-9.

Ho S, Woodford K, Kukuljan S, Pal S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: a blinded randomized cross-over pilot study. Eur J ClinNutr2014;68:994–1000

Jianqin S, Leiming X, Lu X, Yelland GW, Ni J, Clarke AJ. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of dis- comfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr J 2016;15:35.

Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481.

Publicado
2019-02-18
Como Citar
Barbosa, M. G., Souza, A. B., Tavares, G. M., & Antunes, A. E. C. (2019). Leites A1 e A2: revisão sobre seus potenciais efeitos no trato digestório. Segurança Alimentar E Nutricional, 26, e019004. https://doi.org/10.20396/san.v26i0.8652981
Seção
Artigo de Ciência e Tecnologia dos Alimentos