Banner Portal
3D model and geovisualisation applied to natural disasters. A proposal of a teaching and research laboratory for monitoring and prediction of landslides
Camadas rítmicas da Formação Irati, Permiano da Bacia do Paraná
PDF (Português (Brasil))

Keywords

Landslides
Unmanned aerial vehicles
Geophysics
3D Modeling
Virtual reality

How to Cite

SIMOES, Silvio Jorge Coelho; ANDRADE, Márcio Roberto Magalhães; MENDES, Tatiana Sussel Gonçalves; MENDES, Rodolfo Moreda; GOMES, Luciene; BORTOLOZO, Cassiano Antonio. 3D model and geovisualisation applied to natural disasters. A proposal of a teaching and research laboratory for monitoring and prediction of landslides. Terræ Didatica, Campinas, SP, v. 15, p. e019024, 2019. DOI: 10.20396/td.v15i0.8654053. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8654053. Acesso em: 17 jul. 2024.

Abstract

Landslides have a high degree of uncertainty, requiring new methods for their analysis, monitoring and forecasting. In Brazil, Cemaden is respon-sible for actions related to natural disasters. Recently, it started, with partner institutions, a project sponsored by FINEP in order to monitor ten landslide-prone areas located in different regions of the country. This paper presents the proposal of REDEGEO to implement a modeling and geovisualization laboratory to study landslide processes in urbanized areas. The laboratory consists of three parts: (A) Field surveys to obtain high resolution images from unmanned aerial vehicles, and utilizing geophysics methods (Resistivity and Ground Penetrating Radar – GPR) to obtain internal geometry of outcrops; (B) 3D modeling using the software Geovisionary®, which allows the analysis of image and geophysi-cal datasets in different formats, considering their volumetric properties; (C) Geovisualization and Virtual Reality (VR), allowing images obtained in the field to be observed from a human-machine interface, so that researchers can have full immersion in the selected areas. The creation of a laboratory related to natural disasters, including geovisualization and VR capabilities, stimulates the active participation of research teams and creates mechanisms for participation by technology developers, managers, civil defense agents and even the population living in risk-prone areas.

https://doi.org/10.20396/td.v15i0.8654053
PDF (Português (Brasil))

References

Andrade, M. R. M.; & Mendes, R. M. (Coords.). (2016). Subprojeto REDEGEO. Rede de Monitoramento Geotécnico. In: Angelis, C. F. (Coord.). 2016. Projeto REMADEN. Rede Nacional de Desastres Naturais. Cemaden: Centro Nacional de Monitoramento e Alertas de Desastres Naturais/Ministério de Ciência, Tecnologia, Inovações e Comunicações, FINEP-Financiadora de Estudos de Projetos, FNDCT-Fundo Nacional de Desenvolvimento Científico e Tecnológico. Carta Convite MCTI/FINEP/FNDCT 01/2016.

Bichler, A.; Bobrowsky, P.; Best, M.; Douma, M.; Hunter, J.; Calvert, T.; & Burns, R. (2004). Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides, 1(1), 29-40.

Brodlie, K.; Dykes, J.; Gillings, M.; Haklay, M. E.; Kitchin, R.; & Kraak, M-J. (2002). Geography in VR: context. In: P. Fischer, D. Unwin (Eds.). (2002). Virtual Reality in Geography (pp 7-16). New York, NY: Taylor & Francis.

Buckley, S. J.; Naumann, N. K.; & Eide, C. H. (Eds.). (2016). 2nd Virtual Geoscience Conference, Proceedings. Bergen, Norway: Uni Research CIPR.

Buckley, S. J.; Howell J. A.; Enge H. D.; & Kurz T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625-638.

Cai, G. (2012). Modeling contextual knowledge for adaptive geographic visualization. In: H. Lin & M. Batty (Ed.). Virtual Geographic Environments (pp. 151-163). Redlands, ESRI Press.

Calazans, P. P.; & Castiglione, L. H. G. (2013). Produção geoinformacional e geovisualização para apoio a planejamento e projeto: um empreendimento piloto em realidade virtual. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto – SBSR. Foz do Iguaçu, Brasil: INPE.

Cardoso, A.; Kirner, C.; Lamounier, E.; & Keiner, J. (2007). Tecnologias para o desenvolvimento de sistemas de realidade virtual e aumentada. Recife: Editora da UFPE.

Carnet, C.; Massonnet, D.; & King, C. (1996). Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysics Research Letters, 23(24), 3579-3582.

Enge, H. D.; Buckley, S. J.; Rotevatn, A.; & Howell, J. A. (2007). From outcrop to reservoir simulation model: workflow and procedures, Geosphere, 3 (6), 469-490.

Esposito, G.; Salvini, R.; Danzi, M.; Matano, F.; Sachi, M.; Seddaiu, M.; S....; & Natale, G. (2016). 3D change detection analysis of a coastal landslide performed by multi-temporal point cloud comparison. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Faust, N. L. (1995). The virtual reality of GIS. Environment and Planning. Planning and Design, 22, 257-268.

Feng, J. (2013). Virtual reality: an efficient way in GIS class teaching. International Journal of Computer Science, 10(1), 363-367.

Fisher, P. & Unwin, D. (Eds). (2002). Virtual reality in Geography. London, England: Taylor & Francis.

Gibson, J. J. (1979). The ecological approach to visual perception. Nova York, NY: Lawrence Erlbaum Association.

Gilbert, R. (1999). A handbook of geophysical techniques for geomorphic and environmental research. Ottawa: Geological Survey of Canada.

Huang B.; Jiang, B.; & Li, H. (2010). An integration of GIS, virtual reality, and the Internet for vi,sualization, analysis and exploration of spatial data. International Journal of Geographical Information Science 15, 439-456.

Jaboyedoff, M.; Oppikofer, T.; & Abellán, A. (2012). Use of LIDAR in landslide investigation: a review. Natural Hazards, 61 (1), 5-28.

Kurz, T. H.; Buckley, S. J.; & Howell, J. A. (2013). Close-range hyperspectral imaging for geological field studies: workflow and methods. International Journal of Remote Sensing, 34 (5), 1798-1822.

Lev, E.; Hamilton, C. W.; Scheidt, S. P.; Rumpf, M. E. (2016). Mapping lava flow morphology and structure with unmanned aerial vehicles. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Lin, H. & Batty, M. (Eds) (2012). Virtual geographic environments. Redlands: ESRI Press.

Lissak, C.; Maquaire, O.; Malet, J. P.; Lavigne, F.; & Gomez, D. R. 2015. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Natural Hazards and Earth Systems Sciences, 15, 1399-1406.

Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress Physical Geography, 32, 31-49.

Merrit, A. J.; Chambers, J. E.; Murphy, W.; Wilkinson, P. B.; West, L. J.; Gunn, D. A.; Meldrun, P. I.; Kirkham, M.; & Dixon, N. (2014). 3D Ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides, 11, 537-550.

Nuth, C.; Girod, L.; Kohler, J.; Bahr, K.; & Karlsen, T. I. (2016). Detailed glacier crevasse morphology mapped by helicopter. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Perrone, A.; Lapenna, V.; & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65-82.

Roch, K. H.; Chwatal, W.; & Brückl, E. (2006). Potentials of monitoring rock fall hazards by GPR: Considering as example the results of Salzburg. Landslides, 3 (2), 87-94.

Sass, O.; Bell, R.; & Glade, T. (2008). Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology, 93(1), 89-103.

Scaioni, M.; Longoni, L.; Melillo, V.; & Papini, M. (2014). Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sensing, 6, 9600-9652.

Silva, R. M.; Veronez, M. R.; Wohnrath, F. M.; Souza, M. K.; & Inocêncio, L. C. (2014). Accuracy analysis of digital outcrop models obtained from Terrestrial Laser Scanner (TLS). International Journal of Advanced Remote Sensing and GIS, 3(1), 506-515.

Silveira, L. G.; Tognoli, F. M. W.; Veronez, M. R.; & Souza, M. K. (2016). An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops. Computers & Geosciences, 1, 1.

Souza, A. M. (2013). Proposta metodológica para o imageamento, caracterização, parametrização e geração de modelos virtuais de afloramentos. Tese de Doutorado. Rio Grande do Norte, Brasil: UFRN, Centro de Ciências Exatas e da Terra.

Tesa, G.; Pesci, A.; Ninfo, A.; & Galgaro, A. (2016). Fast surveying of a sea cliff and a landslide based on structure from motion photogrammetry. Proceedings of II Virtual Geoscience Conference, Bergen, Norway.

Weidmann, Y.; Jouvet, G.; & Fuck, M. (2016). Multi-temporal UAV-survey of a calving glacier in Northwest Greenland. Proceeding of II Virtual Geoscience Conference, Bergen, Norway.

Terrae Didatica utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Downloads

Download data is not yet available.