Banner Portal
Modelagem 3D e geovisualização aplicada a desastres naturais. Uma proposta de laboratório de ensino e pesquisa para monitoramento e previsão de escorregamentos
Camadas rítmicas da Formação Irati, Permiano da Bacia do Paraná
PDF (Português (Brasil))

Palabras clave

Escorregamentos
Veículos aéreos não tripulados
Geofísica
Modelagem 3D
Realidade virtual

Cómo citar

SIMOES, Silvio Jorge Coelho; ANDRADE, Márcio Roberto Magalhães; MENDES, Tatiana Sussel Gonçalves; MENDES, Rodolfo Moreda; GOMES, Luciene; BORTOLOZO, Cassiano Antonio. Modelagem 3D e geovisualização aplicada a desastres naturais. Uma proposta de laboratório de ensino e pesquisa para monitoramento e previsão de escorregamentos. Terræ Didatica, Campinas, SP, v. 15, p. e019024, 2019. DOI: 10.20396/td.v15i0.8654053. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8654053. Acesso em: 17 jul. 2024.

Resumen

Deslizamientos de terra tienem alto grau de incertitud, exigiendo nuevos métodos para el analisis, monitorización y previsión. En Brasil, el Centro Nacional de Monitoreo y Alertas de Desastres Naturais (Cemaden), el organ de gobierno responsable de las emergencias relacionadas con desastres naturales, ha iniciado juntamente con instituciones, un proyecto patrocinado por FINEP para monitorear áreas de deslizamiento en diferentes regiones del país. Este artigo presenta una propuesta de REDEGEO de implantar un laboratorio de modelado y geovisualización para estudio de procesos de deslizamiento de terra en áreas urbanizadas. O laboratório es composto por três partes: A) Levantamentos de campo para obtener imágenes de alta resolución de veículos aéreos não tripulados y obter a geometria interna de afloramentos a partir de métodos geofísicos (Resistividade y Penetración del Suelo por Radar - GPR); B) modelado 3D usando o software Geovisionary®, que permite analizar datos de imagen y datos geofísicos de diferentes formatos, según sus propiedades volumétricas; C) Geovisualização e Realidade Virtual (RV), empleando-se imágenes obtenidas en trabalhos de campo que puedem ser observadas desde su interfaz homem-máquina y permite a los pesquisadores una imersión total em áreas seleccionadas. La creación de un laboratório relacionado a los desastres naturais, que incluye geovisualização y RV estimula la participación ativa de la equipe de pesquisadores y cria mecanismos para una participación de desenvolvedores de tecnologías, gerentes, agentes de defensa civil y, incluso, la población que vive en áreas propensas a riesgos.

https://doi.org/10.20396/td.v15i0.8654053
PDF (Português (Brasil))

Citas

Andrade, M. R. M.; & Mendes, R. M. (Coords.). (2016). Subprojeto REDEGEO. Rede de Monitoramento Geotécnico. In: Angelis, C. F. (Coord.). 2016. Projeto REMADEN. Rede Nacional de Desastres Naturais. Cemaden: Centro Nacional de Monitoramento e Alertas de Desastres Naturais/Ministério de Ciência, Tecnologia, Inovações e Comunicações, FINEP-Financiadora de Estudos de Projetos, FNDCT-Fundo Nacional de Desenvolvimento Científico e Tecnológico. Carta Convite MCTI/FINEP/FNDCT 01/2016.

Bichler, A.; Bobrowsky, P.; Best, M.; Douma, M.; Hunter, J.; Calvert, T.; & Burns, R. (2004). Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides, 1(1), 29-40.

Brodlie, K.; Dykes, J.; Gillings, M.; Haklay, M. E.; Kitchin, R.; & Kraak, M-J. (2002). Geography in VR: context. In: P. Fischer, D. Unwin (Eds.). (2002). Virtual Reality in Geography (pp 7-16). New York, NY: Taylor & Francis.

Buckley, S. J.; Naumann, N. K.; & Eide, C. H. (Eds.). (2016). 2nd Virtual Geoscience Conference, Proceedings. Bergen, Norway: Uni Research CIPR.

Buckley, S. J.; Howell J. A.; Enge H. D.; & Kurz T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625-638.

Cai, G. (2012). Modeling contextual knowledge for adaptive geographic visualization. In: H. Lin & M. Batty (Ed.). Virtual Geographic Environments (pp. 151-163). Redlands, ESRI Press.

Calazans, P. P.; & Castiglione, L. H. G. (2013). Produção geoinformacional e geovisualização para apoio a planejamento e projeto: um empreendimento piloto em realidade virtual. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto – SBSR. Foz do Iguaçu, Brasil: INPE.

Cardoso, A.; Kirner, C.; Lamounier, E.; & Keiner, J. (2007). Tecnologias para o desenvolvimento de sistemas de realidade virtual e aumentada. Recife: Editora da UFPE.

Carnet, C.; Massonnet, D.; & King, C. (1996). Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysics Research Letters, 23(24), 3579-3582.

Enge, H. D.; Buckley, S. J.; Rotevatn, A.; & Howell, J. A. (2007). From outcrop to reservoir simulation model: workflow and procedures, Geosphere, 3 (6), 469-490.

Esposito, G.; Salvini, R.; Danzi, M.; Matano, F.; Sachi, M.; Seddaiu, M.; S....; & Natale, G. (2016). 3D change detection analysis of a coastal landslide performed by multi-temporal point cloud comparison. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Faust, N. L. (1995). The virtual reality of GIS. Environment and Planning. Planning and Design, 22, 257-268.

Feng, J. (2013). Virtual reality: an efficient way in GIS class teaching. International Journal of Computer Science, 10(1), 363-367.

Fisher, P. & Unwin, D. (Eds). (2002). Virtual reality in Geography. London, England: Taylor & Francis.

Gibson, J. J. (1979). The ecological approach to visual perception. Nova York, NY: Lawrence Erlbaum Association.

Gilbert, R. (1999). A handbook of geophysical techniques for geomorphic and environmental research. Ottawa: Geological Survey of Canada.

Huang B.; Jiang, B.; & Li, H. (2010). An integration of GIS, virtual reality, and the Internet for vi,sualization, analysis and exploration of spatial data. International Journal of Geographical Information Science 15, 439-456.

Jaboyedoff, M.; Oppikofer, T.; & Abellán, A. (2012). Use of LIDAR in landslide investigation: a review. Natural Hazards, 61 (1), 5-28.

Kurz, T. H.; Buckley, S. J.; & Howell, J. A. (2013). Close-range hyperspectral imaging for geological field studies: workflow and methods. International Journal of Remote Sensing, 34 (5), 1798-1822.

Lev, E.; Hamilton, C. W.; Scheidt, S. P.; Rumpf, M. E. (2016). Mapping lava flow morphology and structure with unmanned aerial vehicles. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Lin, H. & Batty, M. (Eds) (2012). Virtual geographic environments. Redlands: ESRI Press.

Lissak, C.; Maquaire, O.; Malet, J. P.; Lavigne, F.; & Gomez, D. R. 2015. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Natural Hazards and Earth Systems Sciences, 15, 1399-1406.

Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress Physical Geography, 32, 31-49.

Merrit, A. J.; Chambers, J. E.; Murphy, W.; Wilkinson, P. B.; West, L. J.; Gunn, D. A.; Meldrun, P. I.; Kirkham, M.; & Dixon, N. (2014). 3D Ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides, 11, 537-550.

Nuth, C.; Girod, L.; Kohler, J.; Bahr, K.; & Karlsen, T. I. (2016). Detailed glacier crevasse morphology mapped by helicopter. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Perrone, A.; Lapenna, V.; & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65-82.

Roch, K. H.; Chwatal, W.; & Brückl, E. (2006). Potentials of monitoring rock fall hazards by GPR: Considering as example the results of Salzburg. Landslides, 3 (2), 87-94.

Sass, O.; Bell, R.; & Glade, T. (2008). Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology, 93(1), 89-103.

Scaioni, M.; Longoni, L.; Melillo, V.; & Papini, M. (2014). Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sensing, 6, 9600-9652.

Silva, R. M.; Veronez, M. R.; Wohnrath, F. M.; Souza, M. K.; & Inocêncio, L. C. (2014). Accuracy analysis of digital outcrop models obtained from Terrestrial Laser Scanner (TLS). International Journal of Advanced Remote Sensing and GIS, 3(1), 506-515.

Silveira, L. G.; Tognoli, F. M. W.; Veronez, M. R.; & Souza, M. K. (2016). An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops. Computers & Geosciences, 1, 1.

Souza, A. M. (2013). Proposta metodológica para o imageamento, caracterização, parametrização e geração de modelos virtuais de afloramentos. Tese de Doutorado. Rio Grande do Norte, Brasil: UFRN, Centro de Ciências Exatas e da Terra.

Tesa, G.; Pesci, A.; Ninfo, A.; & Galgaro, A. (2016). Fast surveying of a sea cliff and a landslide based on structure from motion photogrammetry. Proceedings of II Virtual Geoscience Conference, Bergen, Norway.

Weidmann, Y.; Jouvet, G.; & Fuck, M. (2016). Multi-temporal UAV-survey of a calving glacier in Northwest Greenland. Proceeding of II Virtual Geoscience Conference, Bergen, Norway.

Terrae Didatica utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Descargas

Los datos de descargas todavía no están disponibles.