Banner Portal
Alternative conceptions about Plate Tectonics
Entrada monumental da Gruta do Lago Azul, ricamente ornamentada por estalactites e estalagmites, situada no município de Bonito, a E da Serra da Bodoquena e a sudoeste do município de Miranda. A região serrana foi edificada em unidades carbonáticas dos grupos Cuiabá e Corumbá, de idade Neoproterozoica. Fotografia: Adriano Gambarini.
PDF (Português (Brasil))

Keywords

Geotectonics
Geosciences Teaching
Alternative conceptions

How to Cite

RIBEIRO, Yuri; SANTOS, Maristella Moreira; OLIVEIRA, Adilson Ribeiro de. Alternative conceptions about Plate Tectonics: a case study focusing high school technical education. Terræ Didatica, Campinas, SP, v. 16, p. e020022, 2020. DOI: 10.20396/td.v16i0.8659218. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8659218. Acesso em: 17 jul. 2024.

Abstract

This article presents an assessment of conceptions held by students about plate tectonics at a technical course in mining. Using a questionnaire, questions were asked about terminology, motion of plates, plate-related subsurface melting and the occurrence of earthquakes. The aim of this approach was to allow participants to express misunderstandings, partial insight and other alternative conceptions, in order to support further learning. It was observed that the students exhibited some descriptive knowledge of plate tectonics, but conceptual explanatory knowledge, which relates the dynamics of plate motion with changes explained by the theory, was weak. It was found that there is a need to use evidences and dynamic connections between plate motion and observable processes to improve learning of the theory. Also highlighted was the importance of conducting a class focused on disproving students' alternative concepts about the theory of plate tectonics.

https://doi.org/10.20396/td.v16i0.8659218
PDF (Português (Brasil))

References

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school: Expanded edition. Washington, DC: The National Academies Press. 384p.

Cheek, K. (2010). Commentary: A summary and analysis of twenty-seven years of geoscience conceptions in research. Journal of Geoscience Education, 58(3), 122-134. doi: 10.5408/1.3544294.

Clark, S. K., & Libarkin, J. C. (2011). Designing a mixed-methods research instrument and scoring rubric to investigate individuals’ conceptions of plate tectonics. In: Feig, A., Stokes, A. (Eds.). (2011). Qualitative inquiry in geoscience education research. Geological Society of America Special Paper, Volume 474: Boulder, CO, The Geological Society of America, p. 81-96. doi:10.1130/2011.2474(07).

Clark, S., Libarkin, J., Kortz, K., & Jordan, S. (2011). Alternate conceptions of plate tectonics held by non science undergraduates. Journal of Geoscience Education, 59, 251-262. doi: 10.5408/1.3651696.

DeLaughter, J. E., Stein, S., Stein, C. A., & Bain, K. R. (1998). Preconceptions about Earth science among students in an introductory course. EOS, 79: 429-432. doi: 10.1029/98EO00325.

Dolphin, G., & Benoit, W. (2016). Students' mental model development during historically contextualized inquiry: how the ‘Tectonic Plate’ metaphor impeded the process. International Journal of Science Education. 38(2), 276-297. doi: 10.1080/09500693.2016.1140247.

Ford, B., & Taylor, M. (2006). Investigating students’ ideas about plate tectonics. Science Scope, 30(1), 38-43.

Francek, M. (2013). A compilation and review of over 500 geoscience misconceptions. International Journal of Science Education, 35(1), 31–64. doi: 10.1080/09500693.2012.736644.

Gobert, J. D. (2000). A typology of causal models for plate tectonics: Inferential power and barriers to understanding. International Journal of Science Education, 22, 937-977. doi: 10.1080/095006900416857.

Guzzetti, B.J. (2000). Learning counter-intuitive science concepts: What have we learned from over a decade of research? Reading & Writing Quarterly, 16(2), 89-98. doi: 10.1080/105735600277971.

Horta, L. F. C., Muniz, E.S., Assunção, P. H. P., Lima, J. P., Friguetto, B. S., Moreira, G. C., & Ferreira, P. L. F. (2018). The use of geological handmade models in the teaching of geosciences. Terræ Didatica, 14(4), 385-388. doi: 10.20396/td.v14i4.8654108.

Incorporated Research Institutions for Seismology. (2020). Recent Earthquake Map. URL: http://ds.iris.edu/seismon/index.phtml. Acesso 14.04.2020.

Kortz, K.M., Smay, J.J., & Murray, D.P. (2008). Increasing student learning in introductory geoscience courses using lecture tutorials. Journal of Geoscience Education, 56, 280-290. doi: 10.5408/1089-9995-56.3.280.

Libarkin, J. C. (2005). Conceptions, cognition, and change: Student thinking about the earth. Journal of Geoscience Education, 53(4), 342. doi: 10.1080/10899995.2005.12028058.

Libarkin, J.C. (2006). College student conceptions of geological phenomena and their importance in classroom instruction. Planet, 17, 1-9. doi: 10.11120/plan.2006.00170006.

Libarkin, J. C., & Anderson, S.W. (2005). Assessment of learning in entry-level geoscience courses: Results from the geoscience concept inventory. Journal of Geoscience Education, 53(4), 394-401. doi: 10.5408/1089-9995-53.4.394

Libarkin, J., & Anderson, S. (2006). The geoscience concept inventory: Application of Rasch analysis to concept inventory development in higher education. In: Liu, X., Boone, W. (Eds.). 2006. Applications of Rasch measurement in science education. Maple Grove, MN: JAM Press. p. 45-73.

Libarkin, J. C., Anderson, S., Dahl, J., Beilfuss, M., Boone, W., & Kurdziel, J. (2005). College students’ ideas about geologic time, Earth’s interior, and Earth’s crust. Journal of Geoscience Education, 53, 17-26. doi: 10.5408/1089-9995-53.1.17.

Lima, M. M. M., Marques, P. C. F., Nunes, H. A. A., Cavalcanti, E. H. F., & Cavalcanti, J. S. S. (2014). Proposta inovadora na aprendizagem da teoria da Tectônica de Placas no Museu de Oceanografia de Serra Talhada, Pernambuco. Terræ Didatica, 10(2), 140-150. doi: 10.20396/td.v10i2.8637371

McDonald, S., Bateman, K., Gall, H., Tanis-Ozcelik, A., Webb, A., & Furman, T. (2019). Mapping the increasing sophistication of students’ understandings of plate tectonics: A learning progressions approach. Journal of Geoscience Education, 67(1), 83-96. doi: 10.1080/10899995.2018.1550972.

Orion, N., & Ault, C. R. (2007). Learning earth sciences. In: Abell, S., Lederman, N. (Eds.). 2007. Handbook on research on science education. Mahwah, NJ: Lawrence Earlbaum Associates. p. 653-688.

Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227. doi: 10.1002/sce.3730660207.

Pushkin, D.B. (1997). Scientific terminology and context: How broad or narrow are our meanings? Journal of Research in Science Teaching, 34, 661-668. doi: 10.1002/(SICI)1098-2736(199708)34:6<661::AID-TEA8>3.0.CO;2-L.

Sawyer, D.S., Henning, A.T., Shipp, S., & Dunbar, R.W. (2005). A data rich exercise for discovering plate boundary processes. Journal of Geoscience Education, 53, 65-74. doi: 10.5408/1089-9995-53.1.65.

Sibley, D. F. (2005). Visual abilities and misconceptions about plate tectonics. Journal of Geoscience Education, 53(4), 471-477. doi: 10.5408/Sibley_v53p471.

Sigal, L.H. (2002). Misconceptions about Lyme disease: Confusions hiding behind ill-chosen terminology. Annals of Internal Medicine, 136, 413-419. doi: 10.7326/0003-4819-136-5-200203050-00024

Simkin, T., Ungar, J. D., Tilling, R. I., Vogt, P. R., & Spall, H. (1994). This dynamic planet: World map of volcanoes, earthquakes, and tectonic plates, U.S. Geological Survey in collaboration with the Smithsonian Institution and U.S. Naval Research Lab, p. Map I-2800, scale 1:30000000. doi: 10.3133/i2800.

Stern, R. J. (1998). A subduction primer for instructors of introductory-geology courses and authors of introductory-geology textbooks. Journal of Geoscience Education, 46, 221-228. doi: 10.5408/1089-9995-46.3.221.

Strike K., & Posner, G. (1992). A revisionist theory of conceptual change. In: Duschl, R., Hamilaton, R. (Eds.). 1992. Philosophy of science, cognitive psychology, and educational theory and practice. Albany: State University of New York Press. p. 147-176.

Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learner’s prior learning. Science Education, 87(5), 732-758. doi: 10.1002/sce.10079.

Teixeira, D. M., Machado, F. B., & Silva, J. S. (2017). O lúdico e o ensino de Geociências no Brasil: principais tendências das publicações na área de Ciências da Natureza. Terræ Didatica, 13(3), 286-294. doi: 10.20396/td.v13i3.8651223.

Toscani, R., França, G. S., Rezende, E. S., & Matos, D. R. (2017). Produção de animações computadorizadas em flash para o ensino básico de Geociências. Terræ Didatica, 13(3), 271-278. doi: 10.20396/td.v13i3.8651221.

Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (1994). The framework theory approach to the problem of conceptual change. In: Vosniadou, S. (ed.). (2008). International handbook of research on conceptual change. New York: Routledge. p. 11-31.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Terrae Didatica

Downloads

Download data is not yet available.