Banner Portal
Conociendo las diferentes caras del ozono
PDF (Português (Brasil))

Palabras clave

Agotamiento de la capa de ozono
Protocolo de Montreal
Contenido total de ozono
Radiación ultravioleta

Cómo citar

YAMAMOTO, Ana Letícia Campos; REBOITA, Michelle Simões; CORRÊA, Marcelo de Paula. Conociendo las diferentes caras del ozono. Terræ Didatica, Campinas, SP, v. 17, n. 00, p. e021036, 2021. DOI: 10.20396/td.v17i00.8666858. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8666858. Acesso em: 17 jul. 2024.

Resumen

El ozono (O3) es un gas presente en dos capas de la atmósfera terrestre: troposfera (altura 0-15 km), capa que contiene el 75% de todos los gases presentes en la atmósfera, y en la estratosfera, una capa que se extiende entre 15 y 50 de altitud. El proceso de formación de O3 y los impactos sobre la salud humana son diferentes en cada una de estas capas: mientras que el O3 troposférico es perjudicial para la salud, el O3 estratosférico tiene un efecto beneficioso indirecto. Con el fin de contribuir a la difusión del conocimiento sobre el O3, esta revisión describe el proceso de formación de O3 en cada capa atmosférica, el impacto en la salud humana y también presenta información sobre el agotamiento de la capa de ozono a través de una revisión actualizada de la literatura.

https://doi.org/10.20396/td.v17i00.8666858
PDF (Português (Brasil))

Citas

Abdul-Wahab, S., & Al-Alawi, S. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling & Software, 17(3), 219-228. doi: 10.1016/S1364-8152(01)00077-9.

Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annual Review of Plant Biology, 63(1), 637-661. doi: 10.1146/annurev-arplant-042110-103829.

Andrade, M. F., Fornaro, A., Freitas, E. D. de, Mazzoli, C. R., Martins, L. D., Boian, C., … Leme, N. P. (2012). Ozone sounding in the Metropolitan Area of São Paulo, Brazil: Wet and dry season campaigns of 2006. Atmospheric Environment, 61, 627-640. doi: 10.1016/j.atmosenv.2012.07.083.

Arbaugh, M., Bytnerowicz, A., Grulke, N., Fenn, M., Poth, M., Temple, P., & Miller, P. (2003). Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains. Environment International, 29(2-3), 401-406. doi: 10.1016/S0160-4120(02)00176-9.

Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., … Deushi, M. (2019). Ozone–climate interactions and effects on solar ultraviolet radiation. Photochemical & Photobiological Sciences, 18(3), 602-640. doi: 10.1039/C8PP90059K.

Bernard, J. J., Gallo, R. L., & Krutmann, J. (2019). Photoimmunology: how ultraviolet radiation affects the immune system. Nature Reviews Immunology, 19(11), 688-701. doi: 10.1038/s41577-019-0185-9.

Cetesb. Companhia Ambiental do Estado de São Paulo. (2021). Padrões de Qualidade do Ar. Disponível em: https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/. Acesso em: 05.07.2021.

Chapman, S. (1930). A theory of upper atmospheric ozone. Memoirs of the Royal Meteorological Society, 3(26), 103-125.

Chen, T.-M., Kuschner, W. G., Gokhale, J., & Shofer, S. (2007). Outdoor Air Pollution: Ozone Health Effects. The American Journal of the Medical Sciences, 333(4), 244-248. doi: 10.1097/MAJ.0b013e31803b8e8c.

Conama. Conselho Nacional do Meio Ambiente. (2018). Resolução Conama nº 491, de 19 de novembro de 2018.

Corrêa, M. P., Godin-Beekmann, S., Haeffelin, M., Bekki, S., Saiag, P., Badosa, J., ... Mahé, E. (2013). Projected changes in clear-sky erythemal and vitamin D effective UV doses for Europe over the period 2006 to 2100. Photochemical & Photobiological Sciences, 12(6), 10503-1064. doi: 10.1039/C3PP50024A.

Corrêa, M. P. (2015). Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. Anais Brasileiros de Dermatologia, 90(3), 297-313. doi: 10.1590/abd1806-4841.20154089.

Corrêa, M. P., Yamamoto, A. L. C., Moraes, G. R., Godin-Beekmann, S., & Mahé, E. (2019). Changes in the total ozone content over the period 2006 to 2100 and the effects on the erythemal and vitamin D effective UV doses for South America and Antarctica. Photochemical & Photobiological Sciences, 18(12), 2931-2941. doi: 10.1039/C9PP00276F.

Crutzen, P. J. (1988). Tropospheric Ozone: An Overview. In: Isaksen, I. S. A. (Eds.). Tropospheric Ozone. Dordrecht: Springer. p. 3-32. doi: 10.1007/978-94-009-2913-5_1.

Dameris, M. (2009). Depletion of the Ozone Layer in the 21st Century. Angewandte Chemie International Edition, 49(3), 489-491. doi: 10.1002/anie.200906334.

De Gruijl, F. R. (1999). Skin cancer and solar UV radiation. European Journal of Cancer, 35(14), 2003-2009. doi: 10.1016/S0959-8049(99)00283-X.

Doherty, R. M. (2015). Ozone pollution from near and far. Nature Geoscience, 8(9), 664-665. doi: 10.1038/ngeo2497.

Douglass, A. R., Newman, P. A., & Solomon, S. (2014). The Antarctic ozone hole: An update. Physics Today, 67(7), 42-48. doi: 10.1063/PT.3.2449.

ECMWF. European Centre for Medium-Range Weather Forecasts. (2017). Smaller ozone hole observed in September 2017. Disponível em: https://atmosphere.copernicus.eu/smaller-ozone-hole-observed-september-2017. Acesso em: 30.08.2021.

EEA. European Environment Agency. (2021). Nitrogen oxides, NOx. Disponível em: https://www.eea.europa.eu/help/glossary/eper-chemicals-glossary/nitrogen-oxides-nox. Acesso em: 23.05.2021.

EPA. United States Environmental Protection Agency. (2021a). What are volatile organic compounds (VOCs)? Disponível em: https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs. Acesso em: 23.05.2021.

EPA. United States Environmental Protection Agency. (2021b). Basic Ozone Layer Science. URL: https://www.epa.gov/ozone-layer-protection/basic-ozone-layer-science. Acesso 19.05.2021.

Finlayson-Pitts, B. J., & Pitts, J. N. (1993). Atmospheric Chemistry of Tropospheric Ozone Formation: Scientific and Regulatory Implications. Air & Waste, 43(8), 1091-1100. doi: 10.1080/1073161X.1993.10467187.

Garcia, R. R. (2011). An Arctic ozone hole? Nature, 478(7370), 462-463. doi: 10.1038/478462a.

Gonçalves, A. A., & Gagnon, G. A. (2011). Ozone Application in Recirculating Aquaculture System: An Overview. Ozone: Science & Engineering, 33(5), 345-367. doi: 10.1080/01919512.2011.604595.

Gorai, A. K., Tuluri, F., Tchounwou, P. B., & Ambinakudige, S. (2014). Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA. Air Quality. Atmosphere & Health, 8(1), 81-96. doi: 10.1007/s11869-014-0276-5.

Goyal, R., England, M. H., Sen Gupta, A., & Jucker, M. (2019). Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environmental Research Letters, 14(12), 124041. doi: 10.1088/1748-9326/ab4874.

Grewe, V. (2006). The origin of ozone. Atmospheric Chemistry and Physics, 6(6), 1495-1511. doi: 10.5194/acp-6-1495-2006.

Hamill, P., & Toon, O. (1991). Polar stratospheric clouds and the ozone hole. Physics today, 44(12), 34-42.

Harrison, G. I., & Young, A. R. (2002). Ultraviolet radiation-induced erythema in human skin. Methods, 28(1), 14-9. doi: 10.1016/S1046-2023(02)00205-0.

Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33(2), 179-197. doi: 10.1016/S0968-4328(01)00011-7.

ICNIRP. International Commission of Non-Ionizing Radiation Protection. (2004). Guidelines on limits of exposure to ultraviolet radiation of wavelength between 180 nm and 400 nm (incoherent optical radiation). Health Physics, 87(2), 171-186.

Krizek, D. T., & Chalker-Scott, L. (2005). Ultraviolet radiation and terrestrial ecosystems. Photochemistry and Photobiology, 81(5), 1021-1025. doi: 10.1562/2005-08-18-RA-654.

Krupa, S. V., & Manning, W. J. (1988). Atmospheric ozone: Formation and effects on vegetation. Environmental Pollution, 50(1-2), 101-137. doi: 10.1016/0269-7491(88)90187-X.

Laube, J. C., Newland, M. J., Hogan, C., Brenninkmeijer, C. A. M., Fraser, P. J., Martinerie, P., ... Sturges, W. T. (2014).

Newly detected ozone-depleting substances in the atmosphere. Nature Geoscience, 7(4), 266-269. doi: 10.1038/ngeo2109.

Lippmann, M. (1989). Health effects of ozone A Critical Review. JAPCA, 39(5), 672-695. doi: 10.1080/08940630.1989.10466554.

Liu, S. C., Kley, D., McFarland, M., Mahlman, J. D., & Levy, H. (1980). On the origin of tropospheric ozone. Journal of Geophysical Research: Oceans, 85(C12), 7546-7552. doi: 10.1029/JC085iC12p07546.

Liu, P., Song, H., Wang, T., Wang, F., Li, X., Miao, C., & Zhao, H. (2020). Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 262, 114366. doi: 10.1016/j.envpol.2020.114366.

Lucas, R., McMichael, T., Smith, W., Armstrong, B. K., Prüss-Üstün, A., & World Health Organization. (2006). Solar ultraviolet radiation: global burden of disease from solar ultraviolet radiation. World Health Organization. Disponível em: https://apps.who.int/iris/bitstream/handle/10665/43505/9241594403_eng.pdf. Acesso em: 20.05.2021.

Mäder, J. A., Staehelin, J., Peter, T., Brunner, D., Rieder, H. E., & Stahel, W. A. (2010). Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. Atmospheric Chemistry and Physics, 10(24), 12161-12171. doi: 10.5194/acp-10-12161-2010.

Manzer, L. E. (1990). The CFC-Ozone Issue: Progress on the Development of Alternatives to CFCs. Science, 249(4964), 31-35. doi: 10.1126/science.249.4964.31.

Meul, S., Dameris, M., Langematz, U., Abalichin, J., Kerschbaumer, A., Kubin, A., & Oberländer-Hayn, S. (2016). Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure. Geophysical Research Letters, 43(6), 2919-2927. doi: 10.1002/2016GL067997.

Montagner, S., & Costa, A. (2009). Bases biomoleculares do fotoenvelhecimento. Anais Brasileiros de Dermatologia, 84(3), 263-269. doi: 10.1590/S0365-05962009000300008.

NASA. National Aeronautics and Space Administration. (2021). What is the Ozone Hole? NASA Ozone Watch, 2021. Disponível em: https://ozonewatch.gsfc.nasa.gov/facts/hole.html. Acesso em: 20.05-2021.

Newman, P. A., & McKenzie, R. (2011). UV impacts avoided by the Montreal Protocol. Photochemical & Photobiological Sciences, 10(7), 1152-1160. doi: 10.1039/C0PP00387E.

Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human health. Environmental Science and Pollution Research, 25(9), 8074-8088. doi: 10.1007/s11356-017-9239-3.

Pandiselvam, R., Subhashini, S., Banuu Priya, E. P., Kothakota, A., Ramesh, S. V., & Shahir, S. (2019). Ozone based food preservation: a promising green technology for enhanced food safety. Ozone: Science & Engineering, 41(1), 17-34. doi: 10.1080/01919512.2018.1490636.

Peter, T. (1994). The stratospheric ozone layer-An overview. Environmental Pollution, 83(1-2), 69-79. doi: 10.1016/0269-7491(94)90024-8.

Peter, T. (1997). Microphysics and heterogeneous chemistry of polar stratospheric clouds. Annual Review of Physical Chemistry, 48(1), 785-822. doi: 10.1146/annurev.physchem.48.1.785.

Prather, M. J., & Watson, R. T. (1990). Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine. Nature, 344(6268), 729-734. doi: 10.1038/344729a0.

Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., & Inoue, Y. (2006). Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmospheric Environment, 40(40), 8081-8087. doi: 10.1016/j.atmosenv.2006.07.011.

Ravishankara, A. R., & Lovejoy, E. R. (1994). Atmospheric lifetime, its application and its determination: CFC-substitutes as a case study. Journal of the Chemical Society Faraday Transactions, 90(15), 2159. doi: 10.1039/FT9949002159.

Rim, D., Gall, E. T., Maddalena, R. L., & Nazaroff, W. W. (2016). Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity. Atmospheric Environment, 125, 15-23. doi: 10.1016/j.atmosenv.2015.10.093.

Robinson, S. A., & Erickson, D. J. (2014). Not just about sunburn - the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Global Change Biology, 21(2), 515-527. doi: 10.1111/gcb.12739.

Rowland, F. S. (1996). Stratospheric Ozone Depletion by Chlorofluorocarbons (Nobel Lecture). Angewandte Chemie International Edition in English, 35(16), 1786-1798. doi: 10.1002/anie.199617861.

Rubin, M. B. (2001). The history of ozone. The Schönbein period, 1839-1868. Bull. Hist. Chem, 26(1), 40-56.

Sadiq, M., Tai, A. P. K., Lombardozzi, D., & Val Martin, M. (2017). Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks. Atmospheric Chemistry and Physics, 17(4), 3055-3066. doi: 10.5194/acp-17-3055-2017.

Salawitch, R.; Fahey, D. W.; Hegglin, M. I.; McBride, L. A.; Tribett, W. R.; Doherty, S. J. (2019). Twenty Questions and Answers About the Ozone Layer: 2018 Update. Scientific Assessment of Ozone Depletion: 2018, 84 pp., World Meteorological Organization, Geneva, Switzerland. Disponível em: https://csl.noaa.gov/assessments/ozone/2018/downloads/twentyquestions.pdf. Acesso em: 05.05.2021.

Santos, T. C. D., Reboita, M. S., & Carvalho, V. S. B. (2018). Investigação da Relação entre Variáveis Atmosféricas e a Concentração de MP10 E O3 no Estado de São Paulo. Revista Brasileira de Meteorologia, 33(4), 631-645. doi: 10.1590/0102-7786334006.

São Paulo. (2013). Decreto nº 59.113, de 23 de abril de 2013.

Saucedo, M. O., Rodríguez, S. H. S., Flores, C. F. A., Valenzuela, R. B., & Luna, M. A. L. (2019). Effects of ultraviolet radiation (UV) in domestic animals. Review. Revista mexicana de ciencias pecuarias, 10(2), 416-432. doi: 10.22319/rmcp.v10i2.4648.

Schoeberl, M. R., & Hartmann, D. L. (1991). The Dynamics of the Stratospheric Polar Vortex and Its Relation to Springtime Ozone Depletions. Science, 251(4989), 46-52. doi: 10.1126/science.251.4989.46.

Sillman, S. (2003). Tropospheric Ozone and Photochemical Smog. In: Holland, H. D., Turekian, K. K. (Eds.). Treatise on Geochemistry. Pergamon: Elsevier Science. p. 407-431.

Solomon, S. (2004). The hole truth. Nature, 427(6972), 289-291. doi: 10.1038/427289a.

Solomon, S., Portmann, R. W., & Thompson, D. W. J. (2007). Contrasts between Antarctic and Arctic ozone depletion. Proceedings of the National Academy of Sciences, 104(2), 445-449. doi: 10.1073/pnas.0604895104.

Solomon, S., Haskins, J., Ivy, D. J., & Min, F. (2014). Fundamental differences between Arctic and Antarctic ozone depletion. Proceedings of the National Academy of Sciences, 111(17), 6220-6225. doi: 10.1073/pnas.1319307111.

Solomon, S. (2019). The discovery of the Antarctic ozone hole. Nature. doi: 10.1038/d41586-019-02837-5.

Staehelin, J., Harris, N. R. P., Appenzeller, C., & Eberhard, J. (2001). Ozone trends: A review. Reviews of Geophysics, 39(2), 231-290. doi: 10.1029/1999RG000059.

Sudo, K., & Akimoto, H. (2007). Global source attribution of tropospheric ozone: Long-range transport from various source regions. Journal of Geophysical Research, 112(D12). doi: 10.1029/2006JD007992.

Thill, S. A., & Spaltenstein, M. (2019). Toward Efficient Low-Temperature Ozone Gas Sterilization of Medical Devices. Ozone: Science & Engineering, 42(5), 386-398. doi: 10.1080/01919512.2019.1704217.

Tiwari, B. K., Brennan, C. S., Curran, T., Gallagher, E., Cullen, P. J., & O’ Donnell, C. P. (2010). Application of ozone in grain processing. Journal of Cereal Science, 51(3), 248-255. doi: 10.1016/j.jcs.2010.01.007.

Umar, M., Roddick, F., Fan, L., & Aziz, H. A. (2013). Application of ozone for the removal of bisphenol A from water and wastewater – A review. Chemosphere, 90(8), 2197-2207. doi: 10.1016/j.chemosphere.2012.09.090.

UNEP. UN Environment Programme. (2021). About Montreal Protocol. Disponível em: https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol. Acesso em: 22.05.2021.

Van der Leun, J. C. (2004). The ozone layer. Photodermatology, Photoimmunology and Photomedicine, 20(4), 159-162. doi: 10.1111/j.1600-0781.2004.00091.x.

Van Dijk, A., Slaper, H., Den Outer, P. N., Morgenstern, O., Braesicke, P., Pyle, J. A., ... Bais, A. F. (2012). Skin Cancer Risks Avoided by the Montreal Protocol-Worldwide Modeling Integrating Coupled Climate-Chemistry Models with a Risk Model for UV. Photochemistry and Photobiology, 89(1), 234-246. doi: 10.1111/j.1751-1097.2012.01223.x.

Wallace, J. M., & Hobbs, P. V. (2007). Atmospheric Science: An Introductory Survey. Elsevier. 485p.

Walsh, K. (2009). UV Radiation and the Eye. Optician, 237, 26-33. Disponível em: https://www.jnjvisioncare.de/sites/default/files/public/emea/documents/tvci_uv_radiation_and_the_eye.pdf. Acesso em: 30.07.2021.

Wang, X., Manning, W., Feng, Z., & Zhu, Y. (2007). Ground-level ozone in China: Distribution and effects on crop yields. Environmental Pollution, 147(2), 394-400. doi: 10.1016/j.envpol.2006.05.006.

Weatherhead, E. C., & Andersen, S. B. (2006). The search for signs of recovery of the ozone layer. Nature, 441(7089), 39-45. doi: 10.1038/nature04746.

WHO. World Health Organization. (2002). World Meteorological Organization, United Nations Environment Programme, International Commission on Non-Ionizing Radiation Protection. Global solar UV index: a practical guide. Disponível em: https://www.who.int/uv/publications/en/UVIGuide.pdf. Acesso em: 05.07.2021.

WHO. World Health Organization. (2005). Air Quality Guidelines - Global Update. Disponível em: https://www.euro.who.int/__data/assets/pdf_file/0008/147851/E87950.pdf. Acesso em: 05.07.2021.

Williamson, C. E., Neale, P. J., Hylander, S., Rose, K. C., Figueroa, F. L., Robinson, S. A., ... Worrest, R. C. (2019). The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochemical & Photobiological Sciences, 18(3), 717-746. doi: 10.1039/C8PP90062K.

WMO. World Meteorological Organization. (1991). Scientific Assessment of Ozone Depletion: 1991, Global Ozone Research and Monitoring Project–Report No. 25, Geneva, Switzerland. Disponível em: https://csl.noaa.gov/assessments/ozone/1991/report.html. Acesso em: 22.05.2021.

WMO. World Meteorological Organization. (2018). Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland. Disponível em: https://csl.noaa.gov/assessments/ozone/2018/. Acesso em: 23.05.2021.

WMO. World Meteorological Organization. (2020). Antarctic ozone hole is large and deep. Disponível em: https://public.wmo.int/en/media/news/2020-antarctic-ozone-hole-large-and-deep. Acesso em: 30.08.2021.

Wu, Y., Polvani, L. M., & Seager, R. (2013). The Importance of the Montreal Protocol in Protecting Earth’s Hydroclimate. Journal of Climate, 26(12), 4049-4068. doi: 10.1175/JCLI-D-12-00675.1.

Ynoue, R. Y., Reboita, M. S., Ambrizzi, T., & Silva, G. A. M. da (2017). Meteorologia: noções básicas. São Paulo: Oficina de Textos. 184p.

Zeng, G., Pyle, J. A., & Young, P. J. (2008). Impact of climate change on tropospheric ozone and its global budgets. Atmospheric Chemistry and Physics, 8(2), 369-387. doi: 10.5194/acp-8-369-2008.

Zepp, R. G., Callaghan, T. V., & Erickson, D. J. (1998). Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 69-82. doi: 10.1016/S1011-1344(98)00186-9.

Zhang, Y., Li, J., & Zhou, L. (2017). The Relationship between Polar Vortex and Ozone Depletion in the Antarctic Stratosphere during the Period 1979-2016. Advances in Meteorology, 2017, 1-12. doi: 10.1155/2017/3078079.

Zhang, J. J., Wei, Y., & Fang, Z. (2019). Ozone Pollution: A Major Health Hazard Worldwide. Frontiers in Immunology, 10, 2518. doi: 10.3389/fimmu.2019.02518.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2021 Terrae Didatica

Descargas

Los datos de descargas todavía no están disponibles.