Banner Portal
Contextos, analogías y tareas, que exponen el propósito de los conceptos clave de probabilidad
ESPANHOL
INGLÊS

Palavras-chave

Interacción de intuiciones
Propósito de los conceptos
Pensamiento probabilístico
Animaciones dinámicas

Como Citar

BOROVCNIK, Manfred. Contextos, analogías y tareas, que exponen el propósito de los conceptos clave de probabilidad. Zetetike, Campinas, SP, v. 28, p. e020008, 2020. DOI: 10.20396/zet.v28i0.8657607. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/zetetike/article/view/8657607. Acesso em: 7 dez. 2024.

Resumo

La probabilidad es y seguirá siendo un concepto virtual. Esta especificidad requiere meta-estrategias que van mucho más allá de la instrucción de los detalles matemáticos y piden un uso sensato de la simulación. Sugerimos enfocar los esfuerzos de enseñanza en exponer explícitamente a los estudiantes al propósito del concepto de probabilidad. El propósito muestra el carácter de probabilidad indirectamente como los pasos requeridos para resolver una tarea hacen que las propiedades parezcan naturales en el contexto. Elaboramos tareas adecuadas y animaciones interactivas, que están diseñadas para superar los obstáculos de aprendizaje. Nos centramos en tres aspectos de la probabilidad: El carácter de las afirmaciones probabilísticas, el uso transparente de la probabilidad para las decisiones bajo riesgo y las consideraciones de inferencia informal en la educación temprana de probabilidad. Un criterio esencial de la enseñanza es hasta qué punto permite a los alumnos un acceso más directo a los conceptos en un nivel intuitivo. Para el diseño de animaciones didácticas, nuestros principios se caracterizan por las siguientes ideas: Se explora un cambio dinámico en comparación con la situación inicial. Como si se tratara de ver un vídeo, se observan las diferentes etapas de la emergencia de una relación entre los conceptos investigados.

https://doi.org/10.20396/zet.v28i0.8657607
ESPANHOL
INGLÊS

Referências

Batanero, C. & Borovcnik, M. (2016). Statistics and probability in high school. Rotterdam: Sense.

Batanero, C., Chernoff, E., Engel, J. Lee, H., & Sánchez, E. (2016). Research on teaching and learning probability. ICME-13 Topical Surveys. Cham, Switzerland: Springer online. Online: doi.org/10.1007/978-3-319-31625-3_1.

Batanero, C., Henry, M., & Parzysz, B. (2005). The nature of chance and probability. In: A. G. Jones (Ed.), Exploring probability in school (pp. 15-37). New York: Springer.

Bennett, D. J. (1999). Randomness. Cambridge, MA: Harvard University Press.

Bohr, N. (1934/1927): Atomic theory and the description of nature. Cambridge, UK: Cambridge University Press (containing the Como lecture of 1927).

Borovcnik, M. (1992). Stochastik im Wechselspiel von Intuitionen und Mathematik (Stochastics in the interplay between intuitions and mathematics). Mannheim: Bibliographisches Institut.

Borovcnik, M. (2015a). Central theorems of probability theory and their impact on probabilistic intuitions. In J. M. Contreras, et al. (Eds.), Didáctica de la Estadística, Probabilidad y Combinatoria, 2 (pp. 15-35). Granada, Universidad de Granada.

Borovcnik, M. (2015b). Risk and decision making: The “logic” of probability. The Mathematics Enthusiast, 12(1, 2 & 3), 113-139.

Borovcnik, M. (2016). Probabilistic thinking and probability literacy in the context of risk. Educação Matemática Pesquisa, 18(3), 1491-1516.

Borovcnik, M. (2019a). Inferência informal e inferência “informal”. Educação Matemática Pesquisa, 21(1), 433-460. Online: dx.doi.org/10.23925/1983-3156.2019v21i1p433-460.

Borovcnik, M. (2019b). Conceptos fundamentales y sus propiedades clave en probabilidad – Cómo identificarlos y proporcionar intuiciones que los sostengan. Revista Eletrônica de Educação Matemática (REVEMAT), 14, Educação Estatística, 1-25.

Borovcnik, M., & Bentz, H. J. (1990, 2003). Intuitive Vorstellungen von Wahrscheinlichkeitskonzepten: Fragebögen und Tiefeninterviews (Intuitive conceptions of probabilistic concepts: Questionnaire and in-depth interviews). Technical Reports. Klagenfurt University.

Borovcnik, M., & Bentz, H. J. (1991). Empirical research in understanding probability. In R. Kapadia, & M. Borovcnik (Eds.), Chance encounters. Mathematics education library vol 12 (pp. 73-106). Dordrecht: Kluwer Academic Publishers.

Borovcnik, M., & Kapadia, R. (2014). A historical and philosophical perspective on probability. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 7-34). New York: Springer.

Borovcnik, M., Peard, R. (1996). Probability. In A. Bishop, et al. (Eds.), International handbook of mathematics education (pp. 239-288). Dordrecht: Kluwer.

Carranza, P. & Kuzniak, A. (2008). Duality of probability and statistics teaching in French education. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Joint ICMI/IASE Study: Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education. Monterrey: ICMI and IASE.

Chernoff, E. J. (2013). Probabilistic relativism: A multivalentological investigation of normatively incorrect relative likelihood comparisons. Philosophy of Mathematics Education Journal, 27, 1-30.

Chernoff, E. & Sriraman, B. (Eds.) (2014). Probabilistic thinking: presenting plural perspectives. Advances in Mathematics Education (Vol. 7). New York: Springer.

Cobb, G.W. (2007). The introductory statistics course: A Ptolemaic curriculum? Technology Innovations in Statistics Education, 1(1).

de Finetti, B. (1937/1992). La prévision: ses lois logiques, ses sources subjectives. Annales Institut Henri Poincaré, 7, 1-68 (1937); English translation: Foresight: Its logical laws, its subjective sources. In S. Kotz, & N. L. Johnson (Eds.), Breakthroughs in statistics (pp. 134-174). New York, Berlin: Springer.

Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht: Reidel.

Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht: Reidel,

Freudenthal, H. (1972). “The empirical law of large numbers” or “The stability of frequencies”. Educational Studies in Mathematics, 4(4), 484-490.

Gigerenzer, G. (2002). Calculated risks: How to know when numbers deceive you. New York: Simon & Schuster.

Jones, G. A., Langrall, C.W., & Mooney, E. S. (2007). Research in probability: Responding to classroom realities. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning, Vol. 2 (pp. 909-956). Greenwich, CT: National Council of Teachers of Mathematics, Information Age Publishing.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.

Kapadia, R., Borovcnik, M. (Eds.) (1991). Chance encounters. Probability in education. Dordrecht: Kluwer.

Kolmogorov, A. N. (1933/1956). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin; English translation: Foundations of the theory of probability. New York: Chelsea.

Lecoutre, M. P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23(6), 557-568.

Simons, P. R. (1984). Instructing with analogies. Journal of Educational Psychology, 76(3), 513–527.

Spiegelhalter, D. (2014a). Comments on probabilistic thinking. In: E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: presenting plural perspectives (Back cover). New York: Springer.

Spiegelhalter, D. (2014b, April). What can education learn from real-world communication of risk and uncertainty? Invited lecture at the Eight British Congress on Mathematical Education, Nottingham.

Steinbring, H. (1991). The theoretical nature of probability in the classroom. In: R. Kapadia & M. Borovcnik (Eds.). Chance encounters (pp. 135-167). Dordrecht: Kluwer.

Székely, G. J. (1986). Paradoxes in probability and mathematical statistics. Dordrecht: D. Reidel.

Vancsó, Ö. (2009). A parallel discussion of classical and Bayesian ways as an introduction to statistical inference. International Electronic Journal of Mathematics Education, 4(3), 291–322.

Vancsó, Ö. (2018, July). How visualisation using software helps understanding classical and Bayesian statistics. Invited paper in session 6C “Teaching Probability in School – Understanding and Linking it to Statistics.” ICOTS 10, Kyoto, 8-13 July, 2018. Online: www.researchgate.net/profile/Oedoen_Vancso.

von Plato, J. (1994). Creating modern probability: its mathematics, physics and philosophy in historical perspective. Cambridge: Cambridge University Press.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Zetetike

Downloads

Não há dados estatísticos.