Modelagem 3D e geovisualização aplicada a desastres naturais. Uma proposta de laboratório de ensino e pesquisa para monitoramento e previsão de escorregamentos

Palavras-chave: Escorregamentos, Veículos aéreos não tripulados, Geofísica, Modelagem 3D, Realidade virtual

Resumo

Deslizamentos de terra têm um alto grau de incerteza, exigindo novos métodos para análise, monitoramento e previsão. No Brasil, o Centro Nacional de Monitoramento e Alertas de Desastres Naturais (Cemaden), órgão responsável por ações relacionadas a desastres naturais, iniciou recentemente com instituições parceiras, um projeto patrocinado pela FINEP para monitorar dez áreas de desabamentos situadas em diferentes regiões do país. Este artigo apresenta a proposta da REDEGEO de implantar um laboratório de modelagem e geovisualização para estudar processos de deslizamentos de terra em áreas urbanizadas. O laboratório é composto por três partes: A) Levantamentos de campo para obter imagens de alta resolução de veículos aéreos não tripulados e obter a geometria interna de afloramentos a partir de métodos geofísicos (Resistividade e Penetração do Solo por Radar – GPR); B) modelagem 3D utilizando o software Geovisionary®, que permite analisar dados de imagem e dados geofísicos de diferentes formatos, considerando suas propriedades volumétricas; C) Geovisualização e Realidade Virtual (RV), na qual as imagens obtidas em trabalhos de campo podem ser observadas a partir de uma interface homem-máquina que permite aos pesquisadores uma imersão total nas áreas selecionadas. A criação de um laboratório relacionado aos desastres naturais, que inclui geovisualização e RV estimula a participação ativa da equipe de pesquisadores e cria mecanismos para a participação de desenvolvedores de tecnologias, gerentes, agentes de defesa civil e até a população que vive em áreas propensas a riscos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Silvio Jorge Coelho Simoes, Universidade Estadual Paulista

Professor Associado, Departamento de Engenharia Ambiental, Instituto de Ciência e Tecnologia (ICT) da Universidade Estadual Paulista Júlio de Mesquita Filho.

Márcio Roberto Magalhães Andrade, Universidade de São Paulo

Mestrado e Doutorado em Geografia pela Faculdade de Filosofia Letras Ciências Humanas da Universidade de São Paulo.

Tatiana Sussel Gonçalves Mendes, Universidade Estadual Paulista

Doutorado em Ciências Cartográficas pela UNESP. Professora Assistente Doutora do Departamento de Engenharia Ambiental do Instituto de Ciência e Tecnologia da UNESP.

Rodolfo Moreda Mendes, Universidade de São Paulo

Doutorado em Engenharia Geotécnica pela Universidade de São Paulo. Pesquisador Associado do Centro Nacional de Monitoramento e Alertas de Desastres Naturais-CEMADEN/MCTIC.

Luciene Gomes, Universidade de Leeds

Escola de Geografia - Universidade de Leeds.

Cassiano Antonio Bortolozo, Universidade de São Paulo

Doutor em Ciências pela Universidade de São Paulo. Pesquisador bolsista no Centro Nacional de Monitoramento e Alertas de Desastres Naturais (Cemaden).

Referências

Andrade, M. R. M.; & Mendes, R. M. (Coords.). (2016). Subprojeto REDEGEO. Rede de Monitoramento Geotécnico. In: Angelis, C. F. (Coord.). 2016. Projeto REMADEN. Rede Nacional de Desastres Naturais. Cemaden: Centro Nacional de Monitoramento e Alertas de Desastres Naturais/Ministério de Ciência, Tecnologia, Inovações e Comunicações, FINEP-Financiadora de Estudos de Projetos, FNDCT-Fundo Nacional de Desenvolvimento Científico e Tecnológico. Carta Convite MCTI/FINEP/FNDCT 01/2016.

Bichler, A.; Bobrowsky, P.; Best, M.; Douma, M.; Hunter, J.; Calvert, T.; & Burns, R. (2004). Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides, 1(1), 29-40.

Brodlie, K.; Dykes, J.; Gillings, M.; Haklay, M. E.; Kitchin, R.; & Kraak, M-J. (2002). Geography in VR: context. In: P. Fischer, D. Unwin (Eds.). (2002). Virtual Reality in Geography (pp 7-16). New York, NY: Taylor & Francis.

Buckley, S. J.; Naumann, N. K.; & Eide, C. H. (Eds.). (2016). 2nd Virtual Geoscience Conference, Proceedings. Bergen, Norway: Uni Research CIPR.

Buckley, S. J.; Howell J. A.; Enge H. D.; & Kurz T. H. (2008). Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625-638.

Cai, G. (2012). Modeling contextual knowledge for adaptive geographic visualization. In: H. Lin & M. Batty (Ed.). Virtual Geographic Environments (pp. 151-163). Redlands, ESRI Press.

Calazans, P. P.; & Castiglione, L. H. G. (2013). Produção geoinformacional e geovisualização para apoio a planejamento e projeto: um empreendimento piloto em realidade virtual. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto – SBSR. Foz do Iguaçu, Brasil: INPE.

Cardoso, A.; Kirner, C.; Lamounier, E.; & Keiner, J. (2007). Tecnologias para o desenvolvimento de sistemas de realidade virtual e aumentada. Recife: Editora da UFPE.

Carnet, C.; Massonnet, D.; & King, C. (1996). Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysics Research Letters, 23(24), 3579-3582.

Enge, H. D.; Buckley, S. J.; Rotevatn, A.; & Howell, J. A. (2007). From outcrop to reservoir simulation model: workflow and procedures, Geosphere, 3 (6), 469-490.

Esposito, G.; Salvini, R.; Danzi, M.; Matano, F.; Sachi, M.; Seddaiu, M.; S....; & Natale, G. (2016). 3D change detection analysis of a coastal landslide performed by multi-temporal point cloud comparison. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Faust, N. L. (1995). The virtual reality of GIS. Environment and Planning. Planning and Design, 22, 257-268.

Feng, J. (2013). Virtual reality: an efficient way in GIS class teaching. International Journal of Computer Science, 10(1), 363-367.

Fisher, P. & Unwin, D. (Eds). (2002). Virtual reality in Geography. London, England: Taylor & Francis.

Gibson, J. J. (1979). The ecological approach to visual perception. Nova York, NY: Lawrence Erlbaum Association.

Gilbert, R. (1999). A handbook of geophysical techniques for geomorphic and environmental research. Ottawa: Geological Survey of Canada.

Huang B.; Jiang, B.; & Li, H. (2010). An integration of GIS, virtual reality, and the Internet for vi,sualization, analysis and exploration of spatial data. International Journal of Geographical Information Science 15, 439-456.

Jaboyedoff, M.; Oppikofer, T.; & Abellán, A. (2012). Use of LIDAR in landslide investigation: a review. Natural Hazards, 61 (1), 5-28.

Kurz, T. H.; Buckley, S. J.; & Howell, J. A. (2013). Close-range hyperspectral imaging for geological field studies: workflow and methods. International Journal of Remote Sensing, 34 (5), 1798-1822.

Lev, E.; Hamilton, C. W.; Scheidt, S. P.; Rumpf, M. E. (2016). Mapping lava flow morphology and structure with unmanned aerial vehicles. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Lin, H. & Batty, M. (Eds) (2012). Virtual geographic environments. Redlands: ESRI Press.

Lissak, C.; Maquaire, O.; Malet, J. P.; Lavigne, F.; & Gomez, D. R. 2015. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Natural Hazards and Earth Systems Sciences, 15, 1399-1406.

Liu, X. (2008). Airborne LiDAR for DEM generation: some critical issues. Progress Physical Geography, 32, 31-49.

Merrit, A. J.; Chambers, J. E.; Murphy, W.; Wilkinson, P. B.; West, L. J.; Gunn, D. A.; Meldrun, P. I.; Kirkham, M.; & Dixon, N. (2014). 3D Ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides, 11, 537-550.

Nuth, C.; Girod, L.; Kohler, J.; Bahr, K.; & Karlsen, T. I. (2016). Detailed glacier crevasse morphology mapped by helicopter. Proceedings of II Virtual Geoscience Conference. Bergen, Norway.

Perrone, A.; Lapenna, V.; & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65-82.

Roch, K. H.; Chwatal, W.; & Brückl, E. (2006). Potentials of monitoring rock fall hazards by GPR: Considering as example the results of Salzburg. Landslides, 3 (2), 87-94.

Sass, O.; Bell, R.; & Glade, T. (2008). Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology, 93(1), 89-103.

Scaioni, M.; Longoni, L.; Melillo, V.; & Papini, M. (2014). Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sensing, 6, 9600-9652.

Silva, R. M.; Veronez, M. R.; Wohnrath, F. M.; Souza, M. K.; & Inocêncio, L. C. (2014). Accuracy analysis of digital outcrop models obtained from Terrestrial Laser Scanner (TLS). International Journal of Advanced Remote Sensing and GIS, 3(1), 506-515.

Silveira, L. G.; Tognoli, F. M. W.; Veronez, M. R.; & Souza, M. K. (2016). An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops. Computers & Geosciences, 1, 1.

Souza, A. M. (2013). Proposta metodológica para o imageamento, caracterização, parametrização e geração de modelos virtuais de afloramentos. Tese de Doutorado. Rio Grande do Norte, Brasil: UFRN, Centro de Ciências Exatas e da Terra.

Tesa, G.; Pesci, A.; Ninfo, A.; & Galgaro, A. (2016). Fast surveying of a sea cliff and a landslide based on structure from motion photogrammetry. Proceedings of II Virtual Geoscience Conference, Bergen, Norway.

Weidmann, Y.; Jouvet, G.; & Fuck, M. (2016). Multi-temporal UAV-survey of a calving glacier in Northwest Greenland. Proceeding of II Virtual Geoscience Conference, Bergen, Norway.

Publicado
2019-09-10
Como Citar
Simoes, S. J. C., Andrade, M. R. M., Mendes, T. S. G., Mendes, R. M., Gomes, L., & Bortolozo, C. A. (2019). Modelagem 3D e geovisualização aplicada a desastres naturais. Uma proposta de laboratório de ensino e pesquisa para monitoramento e previsão de escorregamentos. Terrae Didatica, 15, e019024. https://doi.org/10.20396/td.v15i0.8654053