Banner Portal
Conhecendo as diferentes faces do ozônio
PDF

Palavras-chave

Buraco na camada de ozônio
Protocolo de Montreal
Conteúdo total de ozônio
Radiação ultravioleta

Como Citar

YAMAMOTO, Ana Letícia Campos; REBOITA, Michelle Simões; CORRÊA, Marcelo de Paula. Conhecendo as diferentes faces do ozônio. Terrae Didatica, Campinas, SP, v. 17, n. 00, p. e021036, 2021. DOI: 10.20396/td.v17i00.8666858. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8666858. Acesso em: 3 dez. 2024.

Resumo

O ozônio (O3) é um gás presente em duas camadas da atmosfera terrestre: na troposfera (altura 0-15 km), camada que contém 75% do volume total de gases presentes na atmosfera, e na estratosfera, camada que se estende entre 15 e 50 km de altitude. O processo de formação do O3 em cada uma dessas camadas é diferente, bem como os impactos na saúde humana: enquanto o O3 troposférico é deletério à saúde, o estratosférico tem um efeito indireto benéfico. A fim de contribuir para a disseminação do conhecimento sobre o O3, aqui é descrito, por meio de uma revisão atualizada da literatura, o processo de formação do O3 em cada camada atmosférica, seu impacto na saúde humana e, também, os fatores que causam a depleção da camada de ozônio.

https://doi.org/10.20396/td.v17i00.8666858
PDF

Referências

Abdul-Wahab, S., & Al-Alawi, S. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling & Software, 17(3), 219-228. doi: 10.1016/S1364-8152(01)00077-9.

Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annual Review of Plant Biology, 63(1), 637-661. doi: 10.1146/annurev-arplant-042110-103829.

Andrade, M. F., Fornaro, A., Freitas, E. D. de, Mazzoli, C. R., Martins, L. D., Boian, C., … Leme, N. P. (2012). Ozone sounding in the Metropolitan Area of São Paulo, Brazil: Wet and dry season campaigns of 2006. Atmospheric Environment, 61, 627-640. doi: 10.1016/j.atmosenv.2012.07.083.

Arbaugh, M., Bytnerowicz, A., Grulke, N., Fenn, M., Poth, M., Temple, P., & Miller, P. (2003). Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains. Environment International, 29(2-3), 401-406. doi: 10.1016/S0160-4120(02)00176-9.

Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., … Deushi, M. (2019). Ozone–climate interactions and effects on solar ultraviolet radiation. Photochemical & Photobiological Sciences, 18(3), 602-640. doi: 10.1039/C8PP90059K.

Bernard, J. J., Gallo, R. L., & Krutmann, J. (2019). Photoimmunology: how ultraviolet radiation affects the immune system. Nature Reviews Immunology, 19(11), 688-701. doi: 10.1038/s41577-019-0185-9.

Cetesb. Companhia Ambiental do Estado de São Paulo. (2021). Padrões de Qualidade do Ar. Disponível em: https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/. Acesso em: 05.07.2021.

Chapman, S. (1930). A theory of upper atmospheric ozone. Memoirs of the Royal Meteorological Society, 3(26), 103-125.

Chen, T.-M., Kuschner, W. G., Gokhale, J., & Shofer, S. (2007). Outdoor Air Pollution: Ozone Health Effects. The American Journal of the Medical Sciences, 333(4), 244-248. doi: 10.1097/MAJ.0b013e31803b8e8c.

Conama. Conselho Nacional do Meio Ambiente. (2018). Resolução Conama nº 491, de 19 de novembro de 2018.

Corrêa, M. P., Godin-Beekmann, S., Haeffelin, M., Bekki, S., Saiag, P., Badosa, J., ... Mahé, E. (2013). Projected changes in clear-sky erythemal and vitamin D effective UV doses for Europe over the period 2006 to 2100. Photochemical & Photobiological Sciences, 12(6), 10503-1064. doi: 10.1039/C3PP50024A.

Corrêa, M. P. (2015). Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. Anais Brasileiros de Dermatologia, 90(3), 297-313. doi: 10.1590/abd1806-4841.20154089.

Corrêa, M. P., Yamamoto, A. L. C., Moraes, G. R., Godin-Beekmann, S., & Mahé, E. (2019). Changes in the total ozone content over the period 2006 to 2100 and the effects on the erythemal and vitamin D effective UV doses for South America and Antarctica. Photochemical & Photobiological Sciences, 18(12), 2931-2941. doi: 10.1039/C9PP00276F.

Crutzen, P. J. (1988). Tropospheric Ozone: An Overview. In: Isaksen, I. S. A. (Eds.). Tropospheric Ozone. Dordrecht: Springer. p. 3-32. doi: 10.1007/978-94-009-2913-5_1.

Dameris, M. (2009). Depletion of the Ozone Layer in the 21st Century. Angewandte Chemie International Edition, 49(3), 489-491. doi: 10.1002/anie.200906334.

De Gruijl, F. R. (1999). Skin cancer and solar UV radiation. European Journal of Cancer, 35(14), 2003-2009. doi: 10.1016/S0959-8049(99)00283-X.

Doherty, R. M. (2015). Ozone pollution from near and far. Nature Geoscience, 8(9), 664-665. doi: 10.1038/ngeo2497.

Douglass, A. R., Newman, P. A., & Solomon, S. (2014). The Antarctic ozone hole: An update. Physics Today, 67(7), 42-48. doi: 10.1063/PT.3.2449.

ECMWF. European Centre for Medium-Range Weather Forecasts. (2017). Smaller ozone hole observed in September 2017. Disponível em: https://atmosphere.copernicus.eu/smaller-ozone-hole-observed-september-2017. Acesso em: 30.08.2021.

EEA. European Environment Agency. (2021). Nitrogen oxides, NOx. Disponível em: https://www.eea.europa.eu/help/glossary/eper-chemicals-glossary/nitrogen-oxides-nox. Acesso em: 23.05.2021.

EPA. United States Environmental Protection Agency. (2021a). What are volatile organic compounds (VOCs)? Disponível em: https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs. Acesso em: 23.05.2021.

EPA. United States Environmental Protection Agency. (2021b). Basic Ozone Layer Science. URL: https://www.epa.gov/ozone-layer-protection/basic-ozone-layer-science. Acesso 19.05.2021.

Finlayson-Pitts, B. J., & Pitts, J. N. (1993). Atmospheric Chemistry of Tropospheric Ozone Formation: Scientific and Regulatory Implications. Air & Waste, 43(8), 1091-1100. doi: 10.1080/1073161X.1993.10467187.

Garcia, R. R. (2011). An Arctic ozone hole? Nature, 478(7370), 462-463. doi: 10.1038/478462a.

Gonçalves, A. A., & Gagnon, G. A. (2011). Ozone Application in Recirculating Aquaculture System: An Overview. Ozone: Science & Engineering, 33(5), 345-367. doi: 10.1080/01919512.2011.604595.

Gorai, A. K., Tuluri, F., Tchounwou, P. B., & Ambinakudige, S. (2014). Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA. Air Quality. Atmosphere & Health, 8(1), 81-96. doi: 10.1007/s11869-014-0276-5.

Goyal, R., England, M. H., Sen Gupta, A., & Jucker, M. (2019). Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environmental Research Letters, 14(12), 124041. doi: 10.1088/1748-9326/ab4874.

Grewe, V. (2006). The origin of ozone. Atmospheric Chemistry and Physics, 6(6), 1495-1511. doi: 10.5194/acp-6-1495-2006.

Hamill, P., & Toon, O. (1991). Polar stratospheric clouds and the ozone hole. Physics today, 44(12), 34-42.

Harrison, G. I., & Young, A. R. (2002). Ultraviolet radiation-induced erythema in human skin. Methods, 28(1), 14-9. doi: 10.1016/S1046-2023(02)00205-0.

Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33(2), 179-197. doi: 10.1016/S0968-4328(01)00011-7.

ICNIRP. International Commission of Non-Ionizing Radiation Protection. (2004). Guidelines on limits of exposure to ultraviolet radiation of wavelength between 180 nm and 400 nm (incoherent optical radiation). Health Physics, 87(2), 171-186.

Krizek, D. T., & Chalker-Scott, L. (2005). Ultraviolet radiation and terrestrial ecosystems. Photochemistry and Photobiology, 81(5), 1021-1025. doi: 10.1562/2005-08-18-RA-654.

Krupa, S. V., & Manning, W. J. (1988). Atmospheric ozone: Formation and effects on vegetation. Environmental Pollution, 50(1-2), 101-137. doi: 10.1016/0269-7491(88)90187-X.

Laube, J. C., Newland, M. J., Hogan, C., Brenninkmeijer, C. A. M., Fraser, P. J., Martinerie, P., ... Sturges, W. T. (2014).

Newly detected ozone-depleting substances in the atmosphere. Nature Geoscience, 7(4), 266-269. doi: 10.1038/ngeo2109.

Lippmann, M. (1989). Health effects of ozone A Critical Review. JAPCA, 39(5), 672-695. doi: 10.1080/08940630.1989.10466554.

Liu, S. C., Kley, D., McFarland, M., Mahlman, J. D., & Levy, H. (1980). On the origin of tropospheric ozone. Journal of Geophysical Research: Oceans, 85(C12), 7546-7552. doi: 10.1029/JC085iC12p07546.

Liu, P., Song, H., Wang, T., Wang, F., Li, X., Miao, C., & Zhao, H. (2020). Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 262, 114366. doi: 10.1016/j.envpol.2020.114366.

Lucas, R., McMichael, T., Smith, W., Armstrong, B. K., Prüss-Üstün, A., & World Health Organization. (2006). Solar ultraviolet radiation: global burden of disease from solar ultraviolet radiation. World Health Organization. Disponível em: https://apps.who.int/iris/bitstream/handle/10665/43505/9241594403_eng.pdf. Acesso em: 20.05.2021.

Mäder, J. A., Staehelin, J., Peter, T., Brunner, D., Rieder, H. E., & Stahel, W. A. (2010). Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. Atmospheric Chemistry and Physics, 10(24), 12161-12171. doi: 10.5194/acp-10-12161-2010.

Manzer, L. E. (1990). The CFC-Ozone Issue: Progress on the Development of Alternatives to CFCs. Science, 249(4964), 31-35. doi: 10.1126/science.249.4964.31.

Meul, S., Dameris, M., Langematz, U., Abalichin, J., Kerschbaumer, A., Kubin, A., & Oberländer-Hayn, S. (2016). Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure. Geophysical Research Letters, 43(6), 2919-2927. doi: 10.1002/2016GL067997.

Montagner, S., & Costa, A. (2009). Bases biomoleculares do fotoenvelhecimento. Anais Brasileiros de Dermatologia, 84(3), 263-269. doi: 10.1590/S0365-05962009000300008.

NASA. National Aeronautics and Space Administration. (2021). What is the Ozone Hole? NASA Ozone Watch, 2021. Disponível em: https://ozonewatch.gsfc.nasa.gov/facts/hole.html. Acesso em: 20.05-2021.

Newman, P. A., & McKenzie, R. (2011). UV impacts avoided by the Montreal Protocol. Photochemical & Photobiological Sciences, 10(7), 1152-1160. doi: 10.1039/C0PP00387E.

Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human health. Environmental Science and Pollution Research, 25(9), 8074-8088. doi: 10.1007/s11356-017-9239-3.

Pandiselvam, R., Subhashini, S., Banuu Priya, E. P., Kothakota, A., Ramesh, S. V., & Shahir, S. (2019). Ozone based food preservation: a promising green technology for enhanced food safety. Ozone: Science & Engineering, 41(1), 17-34. doi: 10.1080/01919512.2018.1490636.

Peter, T. (1994). The stratospheric ozone layer-An overview. Environmental Pollution, 83(1-2), 69-79. doi: 10.1016/0269-7491(94)90024-8.

Peter, T. (1997). Microphysics and heterogeneous chemistry of polar stratospheric clouds. Annual Review of Physical Chemistry, 48(1), 785-822. doi: 10.1146/annurev.physchem.48.1.785.

Prather, M. J., & Watson, R. T. (1990). Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine. Nature, 344(6268), 729-734. doi: 10.1038/344729a0.

Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., & Inoue, Y. (2006). Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmospheric Environment, 40(40), 8081-8087. doi: 10.1016/j.atmosenv.2006.07.011.

Ravishankara, A. R., & Lovejoy, E. R. (1994). Atmospheric lifetime, its application and its determination: CFC-substitutes as a case study. Journal of the Chemical Society Faraday Transactions, 90(15), 2159. doi: 10.1039/FT9949002159.

Rim, D., Gall, E. T., Maddalena, R. L., & Nazaroff, W. W. (2016). Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity. Atmospheric Environment, 125, 15-23. doi: 10.1016/j.atmosenv.2015.10.093.

Robinson, S. A., & Erickson, D. J. (2014). Not just about sunburn - the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Global Change Biology, 21(2), 515-527. doi: 10.1111/gcb.12739.

Rowland, F. S. (1996). Stratospheric Ozone Depletion by Chlorofluorocarbons (Nobel Lecture). Angewandte Chemie International Edition in English, 35(16), 1786-1798. doi: 10.1002/anie.199617861.

Rubin, M. B. (2001). The history of ozone. The Schönbein period, 1839-1868. Bull. Hist. Chem, 26(1), 40-56.

Sadiq, M., Tai, A. P. K., Lombardozzi, D., & Val Martin, M. (2017). Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks. Atmospheric Chemistry and Physics, 17(4), 3055-3066. doi: 10.5194/acp-17-3055-2017.

Salawitch, R.; Fahey, D. W.; Hegglin, M. I.; McBride, L. A.; Tribett, W. R.; Doherty, S. J. (2019). Twenty Questions and Answers About the Ozone Layer: 2018 Update. Scientific Assessment of Ozone Depletion: 2018, 84 pp., World Meteorological Organization, Geneva, Switzerland. Disponível em: https://csl.noaa.gov/assessments/ozone/2018/downloads/twentyquestions.pdf. Acesso em: 05.05.2021.

Santos, T. C. D., Reboita, M. S., & Carvalho, V. S. B. (2018). Investigação da Relação entre Variáveis Atmosféricas e a Concentração de MP10 E O3 no Estado de São Paulo. Revista Brasileira de Meteorologia, 33(4), 631-645. doi: 10.1590/0102-7786334006.

São Paulo. (2013). Decreto nº 59.113, de 23 de abril de 2013.

Saucedo, M. O., Rodríguez, S. H. S., Flores, C. F. A., Valenzuela, R. B., & Luna, M. A. L. (2019). Effects of ultraviolet radiation (UV) in domestic animals. Review. Revista mexicana de ciencias pecuarias, 10(2), 416-432. doi: 10.22319/rmcp.v10i2.4648.

Schoeberl, M. R., & Hartmann, D. L. (1991). The Dynamics of the Stratospheric Polar Vortex and Its Relation to Springtime Ozone Depletions. Science, 251(4989), 46-52. doi: 10.1126/science.251.4989.46.

Sillman, S. (2003). Tropospheric Ozone and Photochemical Smog. In: Holland, H. D., Turekian, K. K. (Eds.). Treatise on Geochemistry. Pergamon: Elsevier Science. p. 407-431.

Solomon, S. (2004). The hole truth. Nature, 427(6972), 289-291. doi: 10.1038/427289a.

Solomon, S., Portmann, R. W., & Thompson, D. W. J. (2007). Contrasts between Antarctic and Arctic ozone depletion. Proceedings of the National Academy of Sciences, 104(2), 445-449. doi: 10.1073/pnas.0604895104.

Solomon, S., Haskins, J., Ivy, D. J., & Min, F. (2014). Fundamental differences between Arctic and Antarctic ozone depletion. Proceedings of the National Academy of Sciences, 111(17), 6220-6225. doi: 10.1073/pnas.1319307111.

Solomon, S. (2019). The discovery of the Antarctic ozone hole. Nature. doi: 10.1038/d41586-019-02837-5.

Staehelin, J., Harris, N. R. P., Appenzeller, C., & Eberhard, J. (2001). Ozone trends: A review. Reviews of Geophysics, 39(2), 231-290. doi: 10.1029/1999RG000059.

Sudo, K., & Akimoto, H. (2007). Global source attribution of tropospheric ozone: Long-range transport from various source regions. Journal of Geophysical Research, 112(D12). doi: 10.1029/2006JD007992.

Thill, S. A., & Spaltenstein, M. (2019). Toward Efficient Low-Temperature Ozone Gas Sterilization of Medical Devices. Ozone: Science & Engineering, 42(5), 386-398. doi: 10.1080/01919512.2019.1704217.

Tiwari, B. K., Brennan, C. S., Curran, T., Gallagher, E., Cullen, P. J., & O’ Donnell, C. P. (2010). Application of ozone in grain processing. Journal of Cereal Science, 51(3), 248-255. doi: 10.1016/j.jcs.2010.01.007.

Umar, M., Roddick, F., Fan, L., & Aziz, H. A. (2013). Application of ozone for the removal of bisphenol A from water and wastewater – A review. Chemosphere, 90(8), 2197-2207. doi: 10.1016/j.chemosphere.2012.09.090.

UNEP. UN Environment Programme. (2021). About Montreal Protocol. Disponível em: https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol. Acesso em: 22.05.2021.

Van der Leun, J. C. (2004). The ozone layer. Photodermatology, Photoimmunology and Photomedicine, 20(4), 159-162. doi: 10.1111/j.1600-0781.2004.00091.x.

Van Dijk, A., Slaper, H., Den Outer, P. N., Morgenstern, O., Braesicke, P., Pyle, J. A., ... Bais, A. F. (2012). Skin Cancer Risks Avoided by the Montreal Protocol-Worldwide Modeling Integrating Coupled Climate-Chemistry Models with a Risk Model for UV. Photochemistry and Photobiology, 89(1), 234-246. doi: 10.1111/j.1751-1097.2012.01223.x.

Wallace, J. M., & Hobbs, P. V. (2007). Atmospheric Science: An Introductory Survey. Elsevier. 485p.

Walsh, K. (2009). UV Radiation and the Eye. Optician, 237, 26-33. Disponível em: https://www.jnjvisioncare.de/sites/default/files/public/emea/documents/tvci_uv_radiation_and_the_eye.pdf. Acesso em: 30.07.2021.

Wang, X., Manning, W., Feng, Z., & Zhu, Y. (2007). Ground-level ozone in China: Distribution and effects on crop yields. Environmental Pollution, 147(2), 394-400. doi: 10.1016/j.envpol.2006.05.006.

Weatherhead, E. C., & Andersen, S. B. (2006). The search for signs of recovery of the ozone layer. Nature, 441(7089), 39-45. doi: 10.1038/nature04746.

WHO. World Health Organization. (2002). World Meteorological Organization, United Nations Environment Programme, International Commission on Non-Ionizing Radiation Protection. Global solar UV index: a practical guide. Disponível em: https://www.who.int/uv/publications/en/UVIGuide.pdf. Acesso em: 05.07.2021.

WHO. World Health Organization. (2005). Air Quality Guidelines - Global Update. Disponível em: https://www.euro.who.int/__data/assets/pdf_file/0008/147851/E87950.pdf. Acesso em: 05.07.2021.

Williamson, C. E., Neale, P. J., Hylander, S., Rose, K. C., Figueroa, F. L., Robinson, S. A., ... Worrest, R. C. (2019). The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochemical & Photobiological Sciences, 18(3), 717-746. doi: 10.1039/C8PP90062K.

WMO. World Meteorological Organization. (1991). Scientific Assessment of Ozone Depletion: 1991, Global Ozone Research and Monitoring Project–Report No. 25, Geneva, Switzerland. Disponível em: https://csl.noaa.gov/assessments/ozone/1991/report.html. Acesso em: 22.05.2021.

WMO. World Meteorological Organization. (2018). Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland. Disponível em: https://csl.noaa.gov/assessments/ozone/2018/. Acesso em: 23.05.2021.

WMO. World Meteorological Organization. (2020). Antarctic ozone hole is large and deep. Disponível em: https://public.wmo.int/en/media/news/2020-antarctic-ozone-hole-large-and-deep. Acesso em: 30.08.2021.

Wu, Y., Polvani, L. M., & Seager, R. (2013). The Importance of the Montreal Protocol in Protecting Earth’s Hydroclimate. Journal of Climate, 26(12), 4049-4068. doi: 10.1175/JCLI-D-12-00675.1.

Ynoue, R. Y., Reboita, M. S., Ambrizzi, T., & Silva, G. A. M. da (2017). Meteorologia: noções básicas. São Paulo: Oficina de Textos. 184p.

Zeng, G., Pyle, J. A., & Young, P. J. (2008). Impact of climate change on tropospheric ozone and its global budgets. Atmospheric Chemistry and Physics, 8(2), 369-387. doi: 10.5194/acp-8-369-2008.

Zepp, R. G., Callaghan, T. V., & Erickson, D. J. (1998). Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 69-82. doi: 10.1016/S1011-1344(98)00186-9.

Zhang, Y., Li, J., & Zhou, L. (2017). The Relationship between Polar Vortex and Ozone Depletion in the Antarctic Stratosphere during the Period 1979-2016. Advances in Meteorology, 2017, 1-12. doi: 10.1155/2017/3078079.

Zhang, J. J., Wei, Y., & Fang, Z. (2019). Ozone Pollution: A Major Health Hazard Worldwide. Frontiers in Immunology, 10, 2518. doi: 10.3389/fimmu.2019.02518.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Terrae Didatica

Downloads

Não há dados estatísticos.